Structural Dynamics at LCLS
LCLS 结构动力学
基本信息
- 批准号:10089007
- 负责人:
- 金额:$ 159.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Active SitesAddressAdenineAntibioticsAreaAutomationAutomobile DrivingBackBedsBindingBiologicalBiomedical ResearchBiomedical TechnologyCollaborationsCommunitiesComplexCoupledCouplingCryoelectron MicroscopyCrystallizationCrystallographyData AnalysesData CollectionDevelopmentDrug DesignEducational workshopElectron MicroscopyEnsureEnzymatic BiochemistryExperimental DesignsFoundationsFutureG-Protein-Coupled ReceptorsGenerationsGenetic TranscriptionGoalsGrantHealthHealth Services ResearchHumanImageInternetLaboratoriesLasersLengthLifeLightMacromolecular ComplexesMeasurementMembrane ProteinsMetabolismMethodological StudiesMethodologyMethodsNamesNeisseria gonorrhoeaePhysiologic pulseProcessProductionPropertyRNA Polymerase IIRegulationResearchResource DevelopmentResourcesRibonucleotide ReductaseRoentgen RaysSamplingScienceScientistServicesSignal TransductionSourceSpecificityStructureSynchrotronsTechnologyTestingTimeTrainingVariantVirus DiseasesWorkbasebeta-Lactamasecommunity engagementcytochrome c oxidasedesigndriving forceexperimental studyimprovedinnovative technologiesinstrumentationmetalloenzymemovieneurotransmissionnew technologynovel strategiesprogramsscreeningstructural biologysuccesssynchrotron radiationtechnology research and developmenttoolx-ray free-electron laser
项目摘要
ABSTRACT: OVERALL
The goal of this proposal is to form a Biomedical Technology Research Resource (BTRR) at SLAC National
Accelerator Laboratory that involves a set of interrelated Technology Research and Development (TR&D)
projects aimed at enhancing and developing the unique capabilities of the SLAC Linac Coherent Light Source
(LCLS) for biomedical applications. The BTRR will enable structural biology experiments that are extremely
difficult or impossible to perform at synchrotron (SR) or electron microscopy (cryoEM) facilities and will increase
the availability of these capabilities to the broader structural biology community. The enabled experiments will
facilitate paradigm-shifting advances on a wide variety of topics, including neurotransmission, signal
transduction, cellular metabolism, transcription and viral infection. The proposed TR&Ds are tightly coupled with
the research themes of the nine Driving Biomedical Projects (DBPs). These research themes focus on
developments to visualize large complexes and membrane proteins, such as GPCRs and that provide accurate
active site structures of metalloenzymes, such as ribonucleotide reductase and cytochrome c oxidase, and
complex macromolecular machines, such as RNA polymerase-II. Finally, a common research area of all DBPs
involve time-resolved (TR) studies that include research to follow dynamic processes involved in adenine
riboswitch signaling, the transport mechanism of N. gonorrhoeae MtrF, antibiotic binding to β-lactamase and
examination of interaction specificity of CypA variants.
All DBPs hinge on highly efficient data collection methods, which are required for successful macromolecular
crystallography (MC) experiments at X-ray FELs. The high peak brightness of an X-ray FEL pulse destroys the
crystal volume exposed, bringing about sample refreshment challenges previously unknown to the MC SR
community. As a result, the sample must be continually replenished throughout the experiment. As part of the
TR&Ds, sample injectors that rapidly deliver crystals and sample solutions to the X-ray beam will be optimized
and automated during LCLS experiments along with data analysis to gauge experimental success and optimize
use of limited sample and beam time. Time resolved studies hinge on improvements to mixing injectors, laser
activation and complementary spectroscopic methods. X-ray FEL beam time is scarce so careful characterization
of samples and complex experimental setups prior to beam time is critical to ensure experimental success, in
particular for complex time resolved measurements of sensitive metalloenzymes intermediates. Experimental
design and testing, sample production, sample characterization (including spectroscopic analysis) and crystal
quality screening are supported in the laboratory, at the Stanford Synchrotron Radiation Lightsource (SSRL) and
during screening beam time at LCLS. Integrating with, and enhancing the existing programs at SSRL and LCLS,
the BTRR will provide support, expertise and training to the biomedical community.
摘要:总体
该提案的目标是在 SLAC 国家实验室建立生物医学技术研究资源 (BTRR)
涉及一系列相互关联的技术研发(TR&D)的加速器实验室
旨在增强和开发 SLAC 直线加速器相干光源独特功能的项目
(LCLS) 用于生物医学应用 BTRR 将使结构生物学实验成为可能。
在同步加速器 (SR) 或电子显微镜 (cryoEM) 设施中很难或不可能执行,并且会增加
这些功能将可供更广泛的结构生物学界使用。
促进各种主题的范式转变进展,包括神经传递、信号
所提出的 TR&D 与转导、细胞代谢、转录和病毒感染紧密结合。
九个驱动生物医学项目(DBP)的研究主题这些研究主题集中于。
可视化大型复合物和膜蛋白(例如 GPCR)的进展,并提供准确的
金属酶的活性位点结构,例如核糖核苷酸还原酶和细胞色素c氧化酶,以及
复杂的大分子机器,例如RNA聚合酶-II,最后是所有DBP的共同研究领域。
涉及时间分辨(TR)研究,其中包括跟踪腺嘌呤动态过程的研究
核糖开关信号传导、淋病奈瑟菌 MtrF 的转运机制、抗生素与 β-内酰胺酶的结合以及
检查 CypA 变体的相互作用特异性。
所有 DBP 都依赖于高效的数据收集方法,这是成功的大分子研究所必需的
X 射线 FEL 的晶体学 (MC) 实验 X 射线 FEL 脉冲的高峰值亮度会破坏 X 射线 FEL 的晶体学 (MC) 实验。
晶体体积暴露,给 MC SR 带来了前所未有的样品刷新挑战
因此,在整个实验过程中必须不断补充样本。
TR&D、快速将晶体和样品溶液输送到 X 射线束的样品注射器将得到优化
并在 LCLS 实验期间实现自动化以及数据分析,以衡量实验成功并进行优化
有限样本和光束时间的使用取决于混合注射器、激光的改进。
激活和补充光谱方法 X 射线 FEL 光束时间稀缺,因此需要仔细表征。
在光束时间之前的样品和复杂的实验设置对于确保实验成功至关重要,
特别适用于敏感金属酶中间体的复杂时间分辨测量。
设计和测试、样品生产、样品表征(包括光谱分析)和晶体
质量筛选由实验室、斯坦福同步辐射光源 (SSRL) 和
在 LCLS 的筛选光束时间期间 整合并增强 SSRL 和 LCLS 的现有计划,
BTRR 将为生物医学界提供支持、专业知识和培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastien Boutet其他文献
Sebastien Boutet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastien Boutet', 18)}}的其他基金
Administrative Supplement for Structural Dynamics in Biology Resource Year 2
生物资源第二年结构动力学行政补充
- 批准号:
10833964 - 财政年份:2021
- 资助金额:
$ 159.46万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Molecular Architecture of Oxidative Stress Induced Double Strand Break Repair
氧化应激诱导双链断裂修复的分子结构
- 批准号:
10755883 - 财政年份:2023
- 资助金额:
$ 159.46万 - 项目类别:
Role of NadD in Mycobacterium tuberculosis proteostasis
NadD 在结核分枝杆菌蛋白质稳态中的作用
- 批准号:
10194900 - 财政年份:2021
- 资助金额:
$ 159.46万 - 项目类别:
Role of NadD in Mycobacterium tuberculosis proteostasis
NadD 在结核分枝杆菌蛋白质稳态中的作用
- 批准号:
10341221 - 财政年份:2021
- 资助金额:
$ 159.46万 - 项目类别: