Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems

用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具

基本信息

  • 批准号:
    RGPIN-2017-05785
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Data science and data engineering have arguably become some of the most important research fields in this century. These fields are based on fundamental branches of science and engineering, namely, information technology, sensor technology, statistics, operations research, optimization, artificial intelligence, data mining and machine learning.***Along with human centric applications, some of these techniques are now being recommended by researchers in machine centric applications in which data is manufactured by machines and decisions are also made by machines based on Machine to Machine (M2M)' learning.***Presently, an important research question is how to exploit the available Big Data sets since, by definition, they consist of large volumes of data, acquired at high velocity, and in a variety of forms. Traditional data-processing and analysis techniques become inadequate.***The objective of this proposal is to develop algorithms and tools that are designed specifically to analyze and to extract knowledge from Big Data that are obtained from industrial systems. The extracted knowledge should lead to an understanding of how various components of a complex system influence each other and interact with their environment, and how an accurate prediction of the degradation can be obtained in a parallel computing framework.***The proposed methodology is based on an approach called Logical Analysis of Data (LAD), which is a data mining, machine learning approach that is based on Boolean logical reasoning. It extracts knowledge in the form of patterns that distinguish and characterize sets of data, and that identify some phenomena of interest. Different LAD' s algorithms that are used to extract patterns in supervised and unsupervised learning will be considered in parallel computing frameworks; namely, enumeration techniques, mixed integer linear programming, and metaheuristics algorithms, mainly genetic algorithms, and ant colonies. The two parallel frameworks that will be used are Hadoop MapReduce and Spark; both are available in an open source environment, thus they are available to the public.***We intend to present to the scientific community scaled up algorithms in an open source environment. As such, every interested individual can use them, improve upon them and add to them. The impact of this research is the possibility of learning, finding, understanding physical complex phenomena that are not fully understood yet, and the exploitation of this knowledge in decision making. Depending on the specific applications in which these algorithms will be used, this knowledge can lead to an increase in safety and security, energy savings, protection of the environment, and increased efficiency in consuming natural resources. It will also lead to intelligent systems that can make the right decision at the right moment. Eventually, this will lead to self-sustaining and sustainable systems.*****
数据科学和数据工程可以说已成为本世纪最重要的研究领域。这些领域基于科学和工程的基本分支,即信息技术,传感器技术,统计,运营研究,优化,人工智能,数据挖掘和机器学习。***以及以人为本的应用,其中一些技术是现在,研究人员在以机器为中心的应用程序中推荐,其中机器制造的数据也由基于机器的机器(M2M)的机器制成。***目前,一个重要的研究问题是如何利用可用的大型大型数据集以来,根据定义,它们由大量数据组成,以高速度和多种形式获得。传统的数据处理和分析技术变得不足。提取的知识应导致对复杂系统的各种组成部分相互影响并与环境相互作用,以及如何在平行计算框架中获得降解的准确预测。***提出的方法基于在一种称为数据逻辑分析(LAD)的方法上,该方法是基于布尔逻辑推理的数据挖掘,机器学习方法。它以区分和表征数据集的模式的形式提取知识,并确定某些感兴趣现象。在平行计算框架中,将考虑用于在监督和无监督学习中提取模式的不同LAD的算法;也就是说,枚举技术,混合整数线性编程和元启发式算法,主要是遗传算法和蚂蚁菌落。将要使用的两个平行框架是Hadoop MapReduce和Spark;两者都在开源环境中可用,因此可向公众使用。因此,每个感兴趣的人都可以使用它们,改进它们并添加到它们中。这项研究的影响是学习,发现,理解尚未完全理解的物理复杂现象的可能性,以及在决策中对这种知识的剥削。根据使用这些算法的特定应用,这些知识可能会导致安全和保障,节能,保护环境的保护以及消费自然资源的效率提高。 它还将导致智能系统可以在正确的时刻做出正确的决定。最终,这将导致自我维持和可持续的系统。*****

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yacout, Soumaya其他文献

Is Fragmentation a Threat to the Success of the Internet of Things?
  • DOI:
    10.1109/jiot.2018.2863180
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Aly, Mohab;Khomh, Foutse;Yacout, Soumaya
  • 通讯作者:
    Yacout, Soumaya
Bidirectional handshaking LSTM for remaining useful life prediction
  • DOI:
    10.1016/j.neucom.2018.09.076
  • 发表时间:
    2019-01-05
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Elsheikh, Ahmed;Yacout, Soumaya;Ouali, Mohamed-Salah
  • 通讯作者:
    Ouali, Mohamed-Salah
Enforcing security in Internet of Things frameworks: A Systematic Literature Review
  • DOI:
    10.1016/j.iot.2019.100050
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Aly, Mohab;Khomh, Foutse;Yacout, Soumaya
  • 通讯作者:
    Yacout, Soumaya
Optimal preventive maintenance policy based on reinforcement learning of a fleet of military trucks
  • DOI:
    10.1007/s10845-016-1237-7
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Barde, Stephane R. A.;Yacout, Soumaya;Shin, Hayong
  • 通讯作者:
    Shin, Hayong
Design for Six Sigma through collaborative multiobjective optimization
  • DOI:
    10.1016/j.cie.2010.09.015
  • 发表时间:
    2011-02-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Baril, Chantal;Yacout, Soumaya;Clement, Bernard
  • 通讯作者:
    Clement, Bernard

Yacout, Soumaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yacout, Soumaya', 18)}}的其他基金

Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Ultra-wide Band mm-Wave Components Design Based on Machine Learning Techniques
基于机器学习技术的超宽带毫米波组件设计
  • 批准号:
    523525-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic fault and performance loss detection of industrial chlorine electrolysis reactors at R2
R2 工业氯电解反应器的自动故障和性能损失检测
  • 批准号:
    515838-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
  • 批准号:
    121700-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
  • 批准号:
    121700-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
  • 批准号:
    121700-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
  • 批准号:
    52361020
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
人工智能工具对预期与货币政策有效性影响的实验研究
  • 批准号:
    72303050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
异质性视角下我国结构性货币政策工具传导机制研究
  • 批准号:
    72373080
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
静态推靠式旋转导向工具疲劳失效机理及寿命预测研究
  • 批准号:
    42372356
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于视频游戏的空间能力测评关键技术及工具开发研究
  • 批准号:
    62377001
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Human-centered CT-based CADx Tools for Traumatic Torso Hemorrhage
以人为中心、基于 CT 的 CADx 工具,用于治疗躯干外伤出血
  • 批准号:
    10566836
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Exploratory Research Project - ADAPT
探索性研究项目 - ADAPT
  • 批准号:
    10577122
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
ContinuOuS Monitoring Tool for Delayed Cerebral IsChemia (COSMIC)
迟发性脑缺血持续监测工具 (COSMIC)
  • 批准号:
    10736589
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
  • 批准号:
    RGPIN-2020-04075
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Computational tools and resources to study alternative splicing and mRNA isoform variation
研究选择性剪接和 mRNA 亚型变异的计算工具和资源
  • 批准号:
    10669330
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了