Exploratory Research Project - ADAPT
探索性研究项目 - ADAPT
基本信息
- 批准号:10577122
- 负责人:
- 金额:$ 10.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-05 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptionAgeAlgorithmsBig DataCaringClinicClinicalComplexComprehensive Health CareDataData CollectionData ScientistData SetData SourcesDevelopmentDisparity populationEffectivenessElectronic Health RecordEnvironmentEquityEthnic OriginEvaluationFeedbackFollow-Up StudiesFoundationsFundingHealthHealth Care VisitHealth PromotionHealth systemHealthcareHealthcare SystemsIndividualInstitutionInsurance CoverageInterventionKnowledgeLearningMachine LearningManualsMapsMental HealthModelingMood DisordersNational Institute of Mental HealthOrganizational AffiliationPatientsPerformancePreventionPrevention ResearchPrimary CareProcessPrognosisRaceResearchResearch PersonnelResearch Project GrantsRiskRisk FactorsSocioeconomic StatusSubgroupSuicideSuicide attemptSuicide preventionSystemTechniquesTechnologyTestingTimeTrainingTranslatingTranslationsUnited StatesUse EffectivenessValidationVisitWorkadvanced analyticsage groupclinical data repositoryclinical diagnosisclinical practiceclinical predictorscohortdata integrationdata modelingdeep learningdeep neural networkdesigneffective interventionethnic minorityevidence basehealth care deliveryhealth care servicehealth disparityheterogenous datahigh riskhigh risk populationhuman-in-the-loopimplementation facilitatorsimprovedinformatics toolinnovationinterestlearning progressionlearning strategymachine learning prediction algorithmmarginalized populationmedical schoolsmedical specialtiespatient populationpilot testpredictive modelingpredictive toolsracial minorityrisk predictionrisk prediction modelsexsocial disparitiessuccesssuicidal riskusability
项目摘要
ADAPT (EXPLORATORY PROJECT): SUMMARY/ABSTRACT
Significance: Machine learning-based risk algorithms have transformational potential to improve suicide risk
identification. However, the lack of large-scale validations, transfer guidance, and automated learning-based
adaptation impedes adoption in clinical practice. This project aims to address this translation gap by
systematically assessing and improving a suicide risk algorithm’s generalizability and adaptability from an
original development setting to a new healthcare system.
Investigators: The transdisciplinary team has comprehensive expertise in applying advanced machine
learning techniques on electronic health record (EHR) data for predictive modeling and prevention analytics (Liu,
Aseltine, Simon), studying clinical diagnosis, prognosis and treatment of serious mood disorders and suicide
(Rothschild), identifying and assessing suicide risk (Simon), and promoting health services delivery redesign
through technology and implementing informatics tools in clinical settings (Gerber).
Innovation: This pioneering study will comprehensively evaluate and improve the generalizability and
adaptability of an evidence-based suicide risk algorithm in different contexts. The team will build a unified pipeline
of Automated, Data-driven, AdaPtable, and Transferable learning for suicide risk prediction (ADAPT). The
versatile ADAPT tool will be accessible to non-expert users and compatible with EHR common data model
standards, providing a scalable, interpretable and sustainable solution to risk algorithm translation across
different clinical contexts. Moreover, we will design an advanced deep learning approach for suicide risk
prediction and evaluate its effectiveness on generalizability and adaptability.
Approach: The proposed study aims to assess the generalizability of the Mental Health Research Network
(MHRN) risk algorithm and explore transfer and ensemble learning to adapt a previously learned model from
original data sources into a tailored one optimized for a new health system (Aim 1); develop a unified pipeline,
ADAPT, to integrate data preprocessing, model assessment and adaptation, model interpretation, and
automated learning; explore how ADAPT’s results can be used to help match individuals to a range of
intervention approaches where specialized or intensive treatment is reserved for those with the highest risk
(Aim 2); design an innovative deep learning approach and test its effectiveness using ADAPT (Aim 3a); engage
stakeholders to better understand potential barriers and facilitators to implementation, iteratively improve
ADAPT’s usability, acceptability, and feasibility through their feedback using validated scales (Aim 3b).
Environment: The UMass Chan Medical School (UMass) has proven its ability to support this ambitious
study by its success with numerous NIMH-funded systems-based suicide prevention studies.
Impact: The study holds great potential for promoting the implementation of an evidence-based EHR suicide
risk algorithm in clinical practice. Paired with effective interventions, it will enable improved suicide prevention.
适应(探索性项目):摘要/摘要
意义:基于机器学习的风险算法具有改善自杀风险的变革潜力
鉴别。但是,缺乏大规模验证,转移指导和自动化的学习
适应阻碍了临床实践中的采用。该项目旨在解决此翻译差距
系统地评估和改善自杀风险算法的普遍性和适应性
新的医疗保健系统的原始开发环境。
调查人员:跨学科团队在应用高级机器方面具有全面的专业知识
电子健康记录的学习技术(EHR)数据用于预测建模和预防分析(LIU,
Aseltine,Simon),研究临床诊断,预后和严重情绪障碍和自杀的治疗
(Rothschild),识别和评估自杀风险(Simon),并促进健康服务进行重新设计
通过技术并在临床环境(Gerber)中实施信息工具。
创新:这项开创性研究将全面评估和提高普遍性和
在不同情况下,基于证据的自杀风险算法的适应性。团队将建立统一的管道
自杀风险预测(Adapt)的自动,数据驱动,适应性和可转移的学习。
非专家用户可以访问多功能适应工具,并与EHR通用数据模型兼容
标准,为风险算法翻译提供可扩展,可解释和可持续的解决方案
不同的临床环境。此外,我们将设计一种自杀风险的先进深度学习方法
预测并评估其对概括性和适应性的有效性。
方法:拟议的研究旨在评估心理健康研究网络的普遍性
(MHRN)风险算法并探索转移和集合学习,以适应以前学习的模型
原始数据源成针对新的卫生系统进行了优化的量身定制的数据源(AIM 1);开发统一管道,
适应,整合数据预处理,模型评估和适应性,模型解释以及
自动学习;探索如何使用适应结果来帮助个人匹配一系列
干预方法是为具有最高风险的人保留专业或强化治疗的方法
(目标2);设计一种创新的深度学习方法,并使用Adapt测试其有效性(AIM 3A);从事
利益相关者更好地了解潜在的障碍和促进者实施,迭代地改善
使用经过验证的量表(AIM 3B)通过反馈来调整其可用性,可接受性和可行性。
环境:UMass Chan医学院(UMass)证明了其支持这一雄心勃勃的能力
通过其成功进行了许多NIMH资助的基于系统的自杀预防研究的研究。
影响:该研究具有促进基于证据的EHR自杀的巨大潜力
临床实践中的风险算法。再加上有效的干预措施,它将可以改善自杀预防。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feifan Liu其他文献
Feifan Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feifan Liu', 18)}}的其他基金
DeepCertainty: Deep Learning for Contextual Diagnostic Uncertainty Measurement in Radiology Reports
DeepCertainty:放射学报告中上下文诊断不确定性测量的深度学习
- 批准号:
10593770 - 财政年份:2023
- 资助金额:
$ 10.48万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Concurrent volumetric imaging with multimodal optical systems
多模态光学系统的并行体积成像
- 批准号:
10727499 - 财政年份:2023
- 资助金额:
$ 10.48万 - 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
- 批准号:
10585123 - 财政年份:2023
- 资助金额:
$ 10.48万 - 项目类别:
Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
- 批准号:
10644112 - 财政年份:2023
- 资助金额:
$ 10.48万 - 项目类别: