Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems

用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具

基本信息

  • 批准号:
    RGPIN-2017-05785
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Data science and data engineering have arguably become some of the most important research fields in this century. These fields are based on fundamental branches of science and engineering, namely, information technology, sensor technology, statistics, operations research, optimization, artificial intelligence, data mining and machine learning.***Along with human centric applications, some of these techniques are now being recommended by researchers in machine centric applications in which data is manufactured by machines and decisions are also made by machines based on ‘Machine to Machine (M2M)' learning.***Presently, an important research question is how to exploit the available Big Data sets since, by definition, they consist of large volumes of data, acquired at high velocity, and in a variety of forms. Traditional data-processing and analysis techniques become inadequate.***The objective of this proposal is to develop algorithms and tools that are designed specifically to analyze and to extract knowledge from Big Data that are obtained from industrial systems. The extracted knowledge should lead to an understanding of how various components of a complex system influence each other and interact with their environment, and how an accurate prediction of the degradation can be obtained in a parallel computing framework.***The proposed methodology is based on an approach called Logical Analysis of Data (LAD), which is a data mining, machine learning approach that is based on Boolean logical reasoning. It extracts knowledge in the form of patterns that distinguish and characterize sets of data, and that identify some phenomena of interest. Different LAD' s algorithms that are used to extract patterns in supervised and unsupervised learning will be considered in parallel computing frameworks; namely, enumeration techniques, mixed integer linear programming, and metaheuristics algorithms, mainly genetic algorithms, and ant colonies. The two parallel frameworks that will be used are Hadoop MapReduce and Spark; both are available in an open source environment, thus they are available to the public.***We intend to present to the scientific community scaled up algorithms in an open source environment. As such, every interested individual can use them, improve upon them and add to them. The impact of this research is the possibility of learning, finding, understanding physical complex phenomena that are not fully understood yet, and the exploitation of this knowledge in decision making. Depending on the specific applications in which these algorithms will be used, this knowledge can lead to an increase in safety and security, energy savings, protection of the environment, and increased efficiency in consuming natural resources. It will also lead to intelligent systems that can make the right decision at the right moment. Eventually, this will lead to self-sustaining and sustainable systems.*****
数据科学和数据工程可以说是科学的分支机构。决策也由基于“机器到机器(M2M)”的机器做出。形式。复杂的系统相互互动并与设想相互作用,以及如何在平行计算框架中预测准确的方法。逻辑推理的低音和识别一些现象的逻辑推理。将使用Hadoop MapReduce,并且在开源环境中都可以使用。他们。正确的时刻。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yacout, Soumaya其他文献

Is Fragmentation a Threat to the Success of the Internet of Things?
  • DOI:
    10.1109/jiot.2018.2863180
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Aly, Mohab;Khomh, Foutse;Yacout, Soumaya
  • 通讯作者:
    Yacout, Soumaya
Bidirectional handshaking LSTM for remaining useful life prediction
  • DOI:
    10.1016/j.neucom.2018.09.076
  • 发表时间:
    2019-01-05
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Elsheikh, Ahmed;Yacout, Soumaya;Ouali, Mohamed-Salah
  • 通讯作者:
    Ouali, Mohamed-Salah
Enforcing security in Internet of Things frameworks: A Systematic Literature Review
  • DOI:
    10.1016/j.iot.2019.100050
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Aly, Mohab;Khomh, Foutse;Yacout, Soumaya
  • 通讯作者:
    Yacout, Soumaya
Optimal preventive maintenance policy based on reinforcement learning of a fleet of military trucks
  • DOI:
    10.1007/s10845-016-1237-7
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Barde, Stephane R. A.;Yacout, Soumaya;Shin, Hayong
  • 通讯作者:
    Shin, Hayong
Design for Six Sigma through collaborative multiobjective optimization
  • DOI:
    10.1016/j.cie.2010.09.015
  • 发表时间:
    2011-02-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Baril, Chantal;Yacout, Soumaya;Clement, Bernard
  • 通讯作者:
    Clement, Bernard

Yacout, Soumaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yacout, Soumaya', 18)}}的其他基金

Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Ultra-wide Band mm-Wave Components Design Based on Machine Learning Techniques
基于机器学习技术的超宽带毫米波组件设计
  • 批准号:
    523525-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic fault and performance loss detection of industrial chlorine electrolysis reactors at R2
R2 工业氯电解反应器的自动故障和性能损失检测
  • 批准号:
    515838-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
  • 批准号:
    121700-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
  • 批准号:
    121700-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
  • 批准号:
    121700-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
  • 批准号:
    52361020
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
人工智能工具对预期与货币政策有效性影响的实验研究
  • 批准号:
    72303050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
异质性视角下我国结构性货币政策工具传导机制研究
  • 批准号:
    72373080
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
静态推靠式旋转导向工具疲劳失效机理及寿命预测研究
  • 批准号:
    42372356
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于视频游戏的空间能力测评关键技术及工具开发研究
  • 批准号:
    62377001
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Human-centered CT-based CADx Tools for Traumatic Torso Hemorrhage
以人为中心、基于 CT 的 CADx 工具,用于治疗躯干外伤出血
  • 批准号:
    10566836
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Exploratory Research Project - ADAPT
探索性研究项目 - ADAPT
  • 批准号:
    10577122
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
ContinuOuS Monitoring Tool for Delayed Cerebral IsChemia (COSMIC)
迟发性脑缺血持续监测工具 (COSMIC)
  • 批准号:
    10736589
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
  • 批准号:
    RGPIN-2020-04075
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Computational tools and resources to study alternative splicing and mRNA isoform variation
研究选择性剪接和 mRNA 亚型变异的计算工具和资源
  • 批准号:
    10669330
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了