Automatic fault and performance loss detection of industrial chlorine electrolysis reactors at R2
R2 工业氯电解反应器的自动故障和性能损失检测
基本信息
- 批准号:515838-2017
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The production of Chlor-Alkli by using electrolysis of aqueous solutions of sodium chloride (or brine) is one ofthe largest industrial scale electro-synthesis worldwide. Plants with more than 1000 individual reactors, inwhich 0.2 mm thin membranes separate chlorine and hydrogen, are common. The Chlor-Alkali manufacturingprocess must be fully controlled in order to avoid any wrong operation which can cause explosions, highlytoxic gas releases, irreversible damages of very expensive cell components and dramatic maintenance costs andproduction loss.At R2, which is a leading Canadian enterprise in this field, expert systems are combined to well-knownmachine learning techniques in order to monitor and to detect any abnormal performance and operatingconditions. This combined system faces some scientific challenges due to the nature of the acquired data. Thus,the objective of this project is to address these challenges and to propose some solutions that are based on thelatest advancement in the field of machine learning.In this research, we seek to study these challenges and to propose solutions, in order to construct a warning anddecision support system by using machine-learning techniques. This system will detect and predict anyabnormal operating conditions, and will advise the operator of the best possible action that must be taken.
通过电解氯化钠水溶液(或盐水)生产氯碱是世界上最大的工业规模电合成之一。拥有 1000 多个独立反应器的工厂很常见,其中 0.2 毫米的薄膜将氯和氢分开。氯碱制造过程必须受到完全控制,以避免任何可能导致爆炸、剧毒气体释放、非常昂贵的电池组件不可逆转的损坏以及巨大的维护成本和生产损失的错误操作。 R2 是加拿大在这方面的领先企业。在该领域,专家系统与众所周知的机器学习技术相结合,以监视和检测任何异常性能和操作条件。由于所获取数据的性质,该组合系统面临一些科学挑战。因此,该项目的目标是应对这些挑战,并根据机器学习领域的最新进展提出一些解决方案。在本研究中,我们试图研究这些挑战并提出解决方案,以便构建一个使用机器学习技术的警告和决策支持系统。该系统将检测和预测任何异常操作条件,并建议操作员必须采取的最佳可能措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yacout, Soumaya其他文献
Is Fragmentation a Threat to the Success of the Internet of Things?
- DOI:
10.1109/jiot.2018.2863180 - 发表时间:
2019-02-01 - 期刊:
- 影响因子:10.6
- 作者:
Aly, Mohab;Khomh, Foutse;Yacout, Soumaya - 通讯作者:
Yacout, Soumaya
Bidirectional handshaking LSTM for remaining useful life prediction
- DOI:
10.1016/j.neucom.2018.09.076 - 发表时间:
2019-01-05 - 期刊:
- 影响因子:6
- 作者:
Elsheikh, Ahmed;Yacout, Soumaya;Ouali, Mohamed-Salah - 通讯作者:
Ouali, Mohamed-Salah
Enforcing security in Internet of Things frameworks: A Systematic Literature Review
- DOI:
10.1016/j.iot.2019.100050 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:5.9
- 作者:
Aly, Mohab;Khomh, Foutse;Yacout, Soumaya - 通讯作者:
Yacout, Soumaya
Optimal preventive maintenance policy based on reinforcement learning of a fleet of military trucks
- DOI:
10.1007/s10845-016-1237-7 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:8.3
- 作者:
Barde, Stephane R. A.;Yacout, Soumaya;Shin, Hayong - 通讯作者:
Shin, Hayong
Design for Six Sigma through collaborative multiobjective optimization
- DOI:
10.1016/j.cie.2010.09.015 - 发表时间:
2011-02-01 - 期刊:
- 影响因子:7.9
- 作者:
Baril, Chantal;Yacout, Soumaya;Clement, Bernard - 通讯作者:
Clement, Bernard
Yacout, Soumaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yacout, Soumaya', 18)}}的其他基金
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Ultra-wide Band mm-Wave Components Design Based on Machine Learning Techniques
基于机器学习技术的超宽带毫米波组件设计
- 批准号:
523525-2018 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
- 批准号:
121700-2012 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
- 批准号:
121700-2012 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Condition Based Maintenance with Logical Analysis of Data
通过数据逻辑分析进行状态维护
- 批准号:
121700-2012 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
动态无线传感器网络弹性化容错组网技术与传输机制研究
- 批准号:61001096
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
雌激素通过错配修复系统预防大肠癌的研究:一个新的假说
- 批准号:30940086
- 批准年份:2009
- 资助金额:10.0 万元
- 项目类别:专项基金项目
低辐射空间环境下商用多核处理器层次化软件容错技术研究
- 批准号:90818016
- 批准年份:2008
- 资助金额:50.0 万元
- 项目类别:重大研究计划
制冷系统故障诊断关键问题的定量研究
- 批准号:50876059
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
MRI: Acquisition of High-Resolution Photon Emission/Laser Fault Injection Microscope with High-Performance Computers for Failure Analysis and Security Assessment of Electronic Syst
MRI:使用高性能计算机获取高分辨率光子发射/激光故障注入显微镜,用于电子系统的故障分析和安全评估
- 批准号:
2117349 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Investigation of a High-performance Stochastic Link-Fault Tolerant Routing Method in Torus with Wide Dimensions
宽维环面高性能随机链路容错路由方法研究
- 批准号:
20K11729 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RII Track-4: Adaptive Fault Detection and Diagnosis Based on Growing Gaussian Mixture Regressions for High-Performance HVAC Systems
RII Track-4:高性能 HVAC 系统基于增长高斯混合回归的自适应故障检测和诊断
- 批准号:
1929209 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Application Based Fault Tolerance in High Performance Computing Applications
高性能计算应用中基于应用程序的容错
- 批准号:
1834202 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
Integrated sensor-system monitoring, fault detection and performance recovery
集成传感器系统监控、故障检测和性能恢复
- 批准号:
5542-2011 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual