Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments

用于细胞微环境高通量表征的微工程平台

基本信息

  • 批准号:
    RGPIN-2014-04010
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Osteoarthritis is the most common form of arthritis, affecting 1 out of every 10 people in Canada. The total cost of arthritis is estimated at $33 billion dollars per year. Similarly, millions of patients in Canada undergo procedures to correct bone deformities each year. Tissue engineering seeks to provide an alternate therapeutic approach using stem cells. Mesenchymal stem cells derived from bone marrow retain a multi-lineage potential to differentiate to fat cells, heart muscle cells, bone cells, and cartilage cells. The physical properties of local microenvironments will play an important role in the differentiation of mesenchymal stem cell. A number of studies have been aimed at combining stem cells with biomaterials for cartilage and bone regeneration, but to date, no study has systematically examined the combinatorial factors to control the physical properties for stem cell differentiation in a 3-D microenvironment. In the 3-D cellular microenvironment, cells interact with their surroundings by processing various chemical and physical signals. To control cellular microenvironments for stem cells, hydrogels have attracted great interests due to high water content, biocompatibility, and mechanical properties resembling natural tissues. However, various parameters of hydrogels are associated with controlling stem cell fate; the optimization of the parameters is essential. Therefore, a high-throughput screening technology to test many parameters in one experiment will facilitate the systematic examination and the optimization of cellular microenvironments generated by hydrogels.**High-throughput screening technology is a method of using robotic liquid handling devices to quickly fabricate microarrays of chemical, genetic, and pharmacological materials and conduct tests in a high-throughput manner. In this research program, we adopt this technology to develop a hydrogel microarray with hundreds of micrometer-sized functional hydrogel spots (diameter: ~500µm; thickness: ~100µm) printed on a standard microscope slide. We will use alginate hydrogels that can be polymerized by ultra violet light. We will test 27 combinations of alginate hydrogels with three different parameters and three different conditions of each parameter that control physical properties. We will characterize the physical properties, such as microstructure, stiffness, and adhesion, using advanced characterization techniques such as atomic force microscopy and scanning electron microscopy. The developed alginate microarray will be used to optimize the effects of physical properties on mesenchymal stem cell differentiation.**Although the molecular mechanisms associated with the biological responses have yet to be clarified, such technology may be widely applicable in cell-microenvironment research. Also, the physical properties identified in this program could be used as design parameters for engineering new biomaterials and microenvironments for tissue regeneration. In this program, we propose to engineer and apply high-throughput screening technology for the identification of cell-microenvironment interactions that increase stem cell differentiation into the bone and cartilage. The results of this research will have high potential to positively affect the large number of patients that undergo procedures to repair bone and cartilage each year. Thus, the orthopedic community in Canada would benefit from the new treatment techniques composed of osteogenic and chondrogenic biomaterials that not only support, but also induce tissue formation. The developed platforms will also be applicable to numerous tissue regeneration applications, such as cardiovascular and nerve tissues and beneficial for biomaterials and tissue engineering research in Canada.
骨关节炎是关节炎的最常见形式,影响加拿大每10人中有1人。关节炎的总成本估计为每年330亿美元。同样,加拿大成千上万的患者每年都会采用纠正骨畸形的程序。组织工程试图使用干细胞提供另一种治疗方法。源自骨髓的间充质干细胞保留了分化为脂肪细胞,心肌细胞,骨细胞和软骨细胞的多条件潜力。局部微环境的物理特性将在间充质干细胞的分化中起重要作用。许多研究旨在将干细胞与软骨和骨骼再生的生物材料结合在一起,但是迄今为止,尚无系统地检查组合因子,以控制3-D微环境中干细胞分化的物理特性。在3-D细胞微环境中,细胞通过处理各种化学和物理信号与周围环境相互作用。为了控制干细胞的细胞微环境,水凝胶由于水分含量高,生物相容性和类似于天然组织的机械性能而引起了极大的兴趣。但是,水凝胶的各种参数与控制干细胞命运有关。参数的优化至关重要。因此,在一个实验中测试许多参数的高通量筛查技术将促进系统的检查并优化水凝胶生成的细胞微环境。在该研究计划中,我们采用这项技术来开发一个水凝胶微阵列,该微阵列具有数百微米大小的功能水凝胶斑点(直径:〜500µm;厚度:〜100µm),上面印有标准显微镜幻灯片。我们将使用可以通过超紫色光聚合的算法水凝胶。我们将通过三个不同的参数和每个参数的三个不同条件来测试27种算法氢的组合,以控制物理特性。我们将使用先进的特征技术(例如原子力显微镜和扫描电子显微镜)来表征物理特性,例如显微结构,刚度和粘合剂。开发的算法将用于优化物理特性对间充质干细胞分化的影响。同样,该程序中确定的物理特性可以用作工程新生物材料和组织再生的微环境的设计参数。在该计划中,我们建议设计并应用高通量筛选技术来识别细胞微环境相互作用,以增加干细胞分化为骨骼和软骨。年。这就是加拿大的骨科群落将受益于由成骨和软骨生物材料组成的新治疗技术不仅支持,而且还会影响组织形成。开发的平台还适用于许多组织再生应用,例如心血管和神经组织,对加拿大的生物材料和组织工程研究有益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kim, Keekyoung其他文献

A Novel, Well-Resolved Direct Laser Bioprinting System for Rapid Cell Encapsulation and Microwell Fabrication
  • DOI:
    10.1002/adhm.201701249
  • 发表时间:
    2018-05-09
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Wang, Zongjie;Jin, Xian;Kim, Keekyoung
  • 通讯作者:
    Kim, Keekyoung
MicroNewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback
Experimental and computational study of microfluidic flow-focusing generation of gelatin methacrylate hydrogel droplets
  • DOI:
    10.1002/app.43701
  • 发表时间:
    2016-08-05
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Samanipour, Roya;Wang, Zongjie;Kim, Keekyoung
  • 通讯作者:
    Kim, Keekyoung
Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor
Rapid and Inexpensive Fabrication of Multi-Depth Microfluidic Device using High-Resolution LCD Stereolithographic 3D Printing

Kim, Keekyoung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kim, Keekyoung', 18)}}的其他基金

Hybrid 3D bioprinting systems for fabricating heterogeneous, vascularized tissue constructs
用于制造异质血管化组织结构的混合 3D 生物打印系统
  • 批准号:
    RGPIN-2020-04559
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid 3D printing systems for soft robotics
用于软体机器人的混合 3D 打印系统
  • 批准号:
    571344-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Alliance Grants
Hybrid 3D bioprinting systems for fabricating heterogeneous, vascularized tissue constructs
用于制造异质血管化组织结构的混合 3D 生物打印系统
  • 批准号:
    RGPIN-2020-04559
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Antimicrobial copper nanocomposite coating for protecting touch surfaces from COVID-19
用于保护触摸表面免受 COVID-19 侵害的抗菌铜纳米复合涂层
  • 批准号:
    554480-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Alliance Grants
Hybrid 3D bioprinting systems for fabricating heterogeneous, vascularized tissue constructs
用于制造异质血管化组织结构的混合 3D 生物打印系统
  • 批准号:
    RGPIN-2020-04559
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Development of reliable building plate for liquid crystal display-based stereolithography 3D printing system
开发用于基于液晶显示器的立体光刻3D打印系统的可靠构建板
  • 批准号:
    508055-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Plus Grants Program
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Atomic Force Microscopy System for Biomedical, Materials, and Environmental Research
用于生物医学、材料和环境研究的原子力显微镜系统
  • 批准号:
    RTI-2017-00308
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Tools and Instruments

相似国自然基金

社会效益与效率兼顾的共享出行平台机制设计与治理对策
  • 批准号:
    72304021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在线医疗平台设计对医疗服务绩效的影响机制研究:多维信息披露视角
  • 批准号:
    72302095
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
集成在线学习,弱监督深度学习和动态交互的三维医学图像分割平台
  • 批准号:
    62301326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
差异化视角下零售平台的消费信贷与运营决策研究
  • 批准号:
    72301260
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
虚假信息跨平台传播模型和关键路径管控方法研究
  • 批准号:
    72374056
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了