Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments

用于细胞微环境高通量表征的微工程平台

基本信息

  • 批准号:
    RGPIN-2014-04010
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Osteoarthritis is the most common form of arthritis, affecting 1 out of every 10 people in Canada. The total cost of arthritis is estimated at $33 billion dollars per year. Similarly, millions of patients in Canada undergo procedures to correct bone deformities each year. Tissue engineering seeks to provide an alternate therapeutic approach using stem cells. Mesenchymal stem cells derived from bone marrow retain a multi-lineage potential to differentiate to fat cells, heart muscle cells, bone cells, and cartilage cells. The physical properties of local microenvironments will play an important role in the differentiation of mesenchymal stem cell. A number of studies have been aimed at combining stem cells with biomaterials for cartilage and bone regeneration, but to date, no study has systematically examined the combinatorial factors to control the physical properties for stem cell differentiation in a 3-D microenvironment. In the 3-D cellular microenvironment, cells interact with their surroundings by processing various chemical and physical signals. To control cellular microenvironments for stem cells, hydrogels have attracted great interests due to high water content, biocompatibility, and mechanical properties resembling natural tissues. However, various parameters of hydrogels are associated with controlling stem cell fate; the optimization of the parameters is essential. Therefore, a high-throughput screening technology to test many parameters in one experiment will facilitate the systematic examination and the optimization of cellular microenvironments generated by hydrogels.High-throughput screening technology is a method of using robotic liquid handling devices to quickly fabricate microarrays of chemical, genetic, and pharmacological materials and conduct tests in a high-throughput manner. In this research program, we adopt this technology to develop a hydrogel microarray with hundreds of micrometer-sized functional hydrogel spots (diameter: ~500µm; thickness: ~100µm) printed on a standard microscope slide. We will use alginate hydrogels that can be polymerized by ultra violet light. We will test 27 combinations of alginate hydrogels with three different parameters and three different conditions of each parameter that control physical properties. We will characterize the physical properties, such as microstructure, stiffness, and adhesion, using advanced characterization techniques such as atomic force microscopy and scanning electron microscopy. The developed alginate microarray will be used to optimize the effects of physical properties on mesenchymal stem cell differentiation.Although the molecular mechanisms associated with the biological responses have yet to be clarified, such technology may be widely applicable in cell-microenvironment research. Also, the physical properties identified in this program could be used as design parameters for engineering new biomaterials and microenvironments for tissue regeneration. In this program, we propose to engineer and apply high-throughput screening technology for the identification of cell-microenvironment interactions that increase stem cell differentiation into the bone and cartilage. The results of this research will have high potential to positively affect the large number of patients that undergo procedures to repair bone and cartilage each year. Thus, the orthopedic community in Canada would benefit from the new treatment techniques composed of osteogenic and chondrogenic biomaterials that not only support, but also induce tissue formation. The developed platforms will also be applicable to numerous tissue regeneration applications, such as cardiovascular and nerve tissues and beneficial for biomaterials and tissue engineering research in Canada.
骨关节炎是最常见的关节炎,加拿大每 10 个人中就有 1 人患有骨关节炎,每年关节炎的总费用高达 330 亿美元,每年有数百万患者接受骨组织矫正手术。工程寻求利用源自骨髓的间充质干细胞提供一种替代的治疗方法,该干细胞保留了分化为脂肪细胞、心肌细胞、骨细胞和软骨细胞的多谱系潜力。微环境将在间充质干细胞的分化中发挥重要作用,许多研究旨在将干细胞与生物材料相结合以进行软骨和骨再生,但迄今为止,还没有研究系统地研究控制物理特性的组合因素。用于3D微环境中的干细胞分化在3D细胞微环境中,细胞通过处理各种化学和物理信号与周围环境相互作用,为了控制干细胞的细胞微环境,水凝胶引起了人们的极大兴趣。然而,水凝胶的各种参数与控制干细胞的命运有关,因此,一种能够同时测试多个参数的高通量筛选技术至关重要。实验将有助于对水凝胶产生的细胞微环境进行系统检查和优化。高通量筛选技术是利用机器人液体处理装置快速制作化学、遗传和药理材料的微阵列并在高通量中进行测试的方法在这个研究项目中,我们采用这种技术开发了一种水凝胶微阵列,在标准显微镜载玻片上打印了数百个微米大小的功能性水凝胶点(直径:~500μm;厚度:~100μm)。我们将测试 27 种藻酸盐水凝胶的组合,以及控制物理性质的每个参数的三个不同条件,例如。使用先进的表征技术,如原子力显微镜和扫描电子显微镜,研究微结构、硬度和粘附力,开发的藻酸盐微阵列将用于优化物理特性对间充质干细胞分化的影响。尽管与生物反应相关的分子机制。尚待澄清,这种技术可能广泛应用于细胞微环境研究,此外,该计划中确定的物理特性可以用作设计新的生物材料和组织微环境的设计参数。在这个项目中,我们建议设计和应用高通量筛选技术来识别细胞与微环境的相互作用,从而增加干细胞分化为骨和软骨的能力。这项研究的结果将具有很大的潜力,对大范围产生积极影响。因此,加拿大的骨科界将受益于由成骨和软骨形成生物材料组成的新治疗技术,这些技术不仅支持,而且还能诱导组织形成。适用适用于许多组织再生应用,例如心血管和神经组织,并且有利于加拿大的生物材料和组织工程研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kim, Keekyoung其他文献

A Novel, Well-Resolved Direct Laser Bioprinting System for Rapid Cell Encapsulation and Microwell Fabrication
  • DOI:
    10.1002/adhm.201701249
  • 发表时间:
    2018-05-09
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Wang, Zongjie;Jin, Xian;Kim, Keekyoung
  • 通讯作者:
    Kim, Keekyoung
MicroNewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback
Experimental and computational study of microfluidic flow-focusing generation of gelatin methacrylate hydrogel droplets
  • DOI:
    10.1002/app.43701
  • 发表时间:
    2016-08-05
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Samanipour, Roya;Wang, Zongjie;Kim, Keekyoung
  • 通讯作者:
    Kim, Keekyoung
Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor
Rapid and Inexpensive Fabrication of Multi-Depth Microfluidic Device using High-Resolution LCD Stereolithographic 3D Printing

Kim, Keekyoung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kim, Keekyoung', 18)}}的其他基金

Hybrid 3D bioprinting systems for fabricating heterogeneous, vascularized tissue constructs
用于制造异质血管化组织结构的混合 3D 生物打印系统
  • 批准号:
    RGPIN-2020-04559
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid 3D printing systems for soft robotics
用于软体机器人的混合 3D 打印系统
  • 批准号:
    571344-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Alliance Grants
Hybrid 3D bioprinting systems for fabricating heterogeneous, vascularized tissue constructs
用于制造异质血管化组织结构的混合 3D 生物打印系统
  • 批准号:
    RGPIN-2020-04559
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Antimicrobial copper nanocomposite coating for protecting touch surfaces from COVID-19
用于保护触摸表面免受 COVID-19 侵害的抗菌铜纳米复合涂层
  • 批准号:
    554480-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Alliance Grants
Hybrid 3D bioprinting systems for fabricating heterogeneous, vascularized tissue constructs
用于制造异质血管化组织结构的混合 3D 生物打印系统
  • 批准号:
    RGPIN-2020-04559
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Development of reliable building plate for liquid crystal display-based stereolithography 3D printing system
开发用于基于液晶显示器的立体光刻3D打印系统的可靠构建板
  • 批准号:
    508055-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Plus Grants Program
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Atomic Force Microscopy System for Biomedical, Materials, and Environmental Research
用于生物医学、材料和环境研究的原子力显微镜系统
  • 批准号:
    RTI-2017-00308
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Tools and Instruments

相似国自然基金

基于异构体水平的母乳N/O-寡糖组HPLC-MSn高通量定性定量分析平台的建立
  • 批准号:
    32371340
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向网约平台的大规模农机协同调度优化研究
  • 批准号:
    72301036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
反向定制情境下制造商和平台企业间大数据共享对创新影响及治理机制研究
  • 批准号:
    72302182
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
长、短视频平台交互影响下的竞合冲突机理及协同应对研究
  • 批准号:
    72301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向决策策略优化的绩效归因分析及其在产业平台经济中的应用研究
  • 批准号:
    72371091
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目

相似海外基金

Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Microengineered Platforms for High-throughput Characterization of Cellular Microenvironments
用于细胞微环境高通量表征的微工程平台
  • 批准号:
    RGPIN-2014-04010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了