Extreme Photonics - from imaging to control -

极限光子学 - 从成像到控制 -

基本信息

  • 批准号:
    RGPIN-2014-03835
  • 负责人:
  • 金额:
    $ 4.3万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Light plays an essential role in our daily lives. Light allows us to see, and without it, we would have difficulty in performing even the simplest of tasks. Perhaps because of this, we frequently associate light with seeing and imaging. However, seeing is not the only thing that light can do. With the advent of lasers, and especially intense lasers with very short durations, scientists can now control how molecules dissociate, drive bound electrons in matter to induce highly nonlinear processes, and even replicate extreme conditions of matter at the core of giant planets like Jupiter.**To date, such experiments have been performed using visible and near-infrared lasers. However, using cutting-edge lasers (such as those at the Canadian Advanced Laser Light Source), one can now make laser-like coherent light sources with high power at both the very short (X-ray) and the very long wavelengths (far-infrared and terahertz radiation). My research has been focusing on the generation of intense light sources at such non-conventional wavelengths, and studying the interaction of these Extreme Photon sources with various matter. This is a new field of research, which I have dubbed "Extreme Photonics". Some of these works are unearthing fascinating phenomena, and simulations are providing new insights to their mechanisms.**Building on my previous Discovery grant, I propose here to extend my research in "Extreme Photonics", by further increasing the intensity of our Extreme Photon sources, and using them to coherently control and image matter at ultrafast timescales, to advance research in areas and sectors of importance to Canada. A major focus of this Discovery grant will be on CONTROL. For example, I will use Extreme Photon sources to study how one could excite and control vibrations of the virus capsid (the protein shell of the virus that protects its inner genetic material). By finding the sweet spot to break the capsid and inactivating viruses, such information could be used to produce safer vaccines. I will also study how intense terahertz radiation could induce and control local openings in DNA, for potential use in drug delivery. **"Extreme Photonics" should also prepare us for the coming era of Big Data. With the amount of data in our world exploding, there is an urgent need to process and read/write data at much higher speeds. We will use our Extreme Photon sources to develop materials and methods for data storage, where switching of bit information could be done at speeds more than 1000 times faster than our current limit. We will also drive graphene (a one-atom thick layer of graphite, earning A. Geim and K. Novoselov the 2010 Nobel Prize) at extremely high speeds and at very high electric fields using our Extreme Photon sources, to see how we could make processors smaller and faster.**In the extremely ultrafast limit, we will study how we could use intense and ultimately short pulses to control material processes at the level of electrons for desired outcome. A bound electron "orbits" a hydrogen atom in about 150 attoseconds, where 1 attosecond is a billionth of a billionth of a second. By using intense X-rays with attosecond duration, one could think of controlling the collective motion of electrons in molecules, whose knowledge could be used to design and synthesize advanced materials for harvesting solar energy.**As one can see, the potential socio-economic impact of ultrafast science is huge. This is also underlined by the various several-100-million-dollar ultrafast laser projects under development in Europe and Russia. Conversely, harnessing Extreme Photonics could be a Canadian way of responding to such huge facilities, thus contributing in maintaining Canada's leadership in this highly competitive field.
光在我们的日常生活中发挥着重要作用。光让我们能够看到东西,如果没有它,我们甚至很难执行最简单的任务。也许正因为如此,我们经常将光与视觉和成像联系起来。然而,视觉并不是光唯一能做的事情。随着激光,尤其是持续时间非常短的强激光的出现,科学家现在可以控制分子如何解离,驱动物质中的束缚电子以引发高度非线性过程,甚至复制木星等巨行星核心的极端物质条件。 **迄今为止,此类实验已使用可见光和近红外激光进行。然而,使用尖端激光器(例如加拿大先进激光光源),现在可以制造在极短波长(X 射线)和极长波长(远波长)下具有高功率的类激光相干光源。 -红外和太赫兹辐射)。我的研究一直集中在这种非常规波长的强光源的产生上,并研究这些极端光子源与各种物质的相互作用。这是一个新的研究领域,我将其称为“极限光子学”。其中一些工作正在挖掘令人着迷的现象,而模拟则为其机制提供了新的见解。**基于我之前的发现资助,我在此建议通过进一步增加我们的极限光子的强度来扩展我在“极限光子学”方面的研究来源,并利用它们在超快的时间尺度上连贯地控制和成像物质,以推进对加拿大重要的领域和部门的研究。这项发现资助的主要重点将是控制。例如,我将使用极限光子源来研究如何激发和控制病毒衣壳(保护其内部遗传物质的病毒蛋白质外壳)的振动。通过找到破坏衣壳和灭活病毒的最佳位置,这些信息可用于生产更安全的疫苗。我还将研究强烈的太赫兹辐射如何诱导和控制 DNA 中的局部开口,以用于药物输送。 **“极限光子学”也应该让我们为即将到来的大数据时代做好准备。随着世界数据量的爆炸式增长,迫切需要以更高的速度处理和读取/写入数据。我们将使用我们的极限光子源来开发数据存储的材料和方法,其中位信息的切换速度可以比我们当前极限快 1000 倍以上。我们还将使用我们的极限光子源在极高的电场和极高的速度下驱动石墨烯(一层单原子厚的石墨,A. Geim 和 K. Novoselov 荣获 2010 年诺贝尔奖),看看我们如何能够制造处理器更小、更快。**在极超快的极限下,我们将研究如何使用强脉冲和最终短脉冲来控制电子水平的材料过程,以获得所需的结果。束缚电子“绕”氢原子运行大约需要 150 阿秒,其中 1 阿秒是十亿分之一秒。通过使用阿秒持续时间的强 X 射线,人们可以考虑控制分子中电子的集体运动,其知识可用于设计和合成用于收集太阳能的先进材料。**正如人们所看到的,潜在的社会-超快科学的经济影响是巨大的。欧洲和俄罗斯正在开发的各种耗资数亿美元的超快激光项目也强调了这一点。相反,利用极限光子学可能是加拿大应对如此庞大设施的一种方式,从而有助于保持加拿大在这个竞争激烈的领域的领导地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ozaki, Tsuneyuki其他文献

Accelerated inactivation of M13 bacteriophage using millijoule femtosecond lasers
  • DOI:
    10.1002/jbio.201900001
  • 发表时间:
    2019-11-20
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Berchtikou, Aziz;Greschner, Andrea A.;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Intense terahertz generation from photoconductive antennas
  • DOI:
    10.1007/s12200-020-1081-4
  • 发表时间:
    2021-01-05
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Isgandarov, Elchin;Ropagnol, Xavier;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Subcycle Terahertz Nonlinear Optics
  • DOI:
    10.1103/physrevlett.121.143901
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Chai, Xin;Ropagnol, Xavier;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Terahertz detection using spectral domain interferometry
  • DOI:
    10.1364/ol.37.004338
  • 发表时间:
    2012-10-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Sharma, Gargi;Singh, Kanwarpal;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Frequency domain optical parametric amplification.
  • DOI:
    10.1038/ncomms4643
  • 发表时间:
    2014-05-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Schmidt, Bruno E.;Thire, Nicolas;Boivin, Maxime;Laramee, Antoine;Poitras, Francois;Lebrun, Guy;Ozaki, Tsuneyuki;Ibrahim, Heide;Legare, Francois
  • 通讯作者:
    Legare, Francois

Ozaki, Tsuneyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ozaki, Tsuneyuki', 18)}}的其他基金

Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2022
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2021
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
Femtosecond high Average-power Micro-joule Extreme-Ultraviolet Source (FAMEUS)
飞秒高平均功率微焦极紫外光源(FAMEUS)
  • 批准号:
    565914-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Alliance Grants
Synchronized impulsive stimulated Raman scattering to inactivate SARS-CoV-2 for slowing and stopping the transmission of COVID-19
同步脉冲受激拉曼散射可灭活 SARS-CoV-2,从而减缓和阻止 COVID-19 的传播
  • 批准号:
    555266-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Alliance Grants
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2020
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
Cutting-edge elliptically and circularly polarized terahertz technology
尖端椭圆和圆偏振太赫兹技术
  • 批准号:
    RTI-2020-00748
  • 财政年份:
    2019
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Research Tools and Instruments
Thz detection using stokes-mueller polarimetry (phase 1)
使用 stokes-mueller 偏振法进行太赫兹检测(第 1 阶段)
  • 批准号:
    505829-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Idea to Innovation
Electrically biased terahertz chemical microscope (Market Assessment)
电偏置太赫兹化学显微镜(市场评估)
  • 批准号:
    545173-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Idea to Innovation
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2019
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Discovery Grants Program - Individual
Unravelling the terahertz electronic properties of graphene for applications in optoelectronics
揭示石墨烯的太赫兹电子特性在光电子学中的应用
  • 批准号:
    494029-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Strategic Projects - Group

相似国自然基金

大视场、宽光谱亚波长光子筛复眼成像机理研究
  • 批准号:
    61875166
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于“多热点”第二代缝隙增强拉曼探针的转移前哨淋巴结显影和鉴别
  • 批准号:
    81871401
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
NMDA受体靶向的单胺氧化酶-A双光子荧光探针的构建及其生物成像的研究
  • 批准号:
    21807093
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于多模态光-电信息的大鼠脑水肿模型神经血管耦合机制基础研究
  • 批准号:
    61875085
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于卷积神经网络和自适应卡尔曼滤波的脑功能FMT/PAT联合动态成像方法
  • 批准号:
    81801745
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Disease-homing light delivery by engineering bioluminescent immune cells for whole body precision photomedicine
通过工程生物发光免疫细胞进行疾病引导光传输,用于全身精准光医学
  • 批准号:
    10578425
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
テラヘルツ強度干渉計による画像合成のためのSIS光子計数型検出器の開発
使用太赫兹强度干涉仪开发用于图像合成的 SIS 光子计数型探测器
  • 批准号:
    22KJ0419
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
INNOVATION FUNNEL FOR FETAL MONITORING CHALLENGE - COORDINATION CENTER
胎儿监护挑战的创新漏斗 - 协调中心
  • 批准号:
    10936562
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
Developing surfAce enhaNCEd infrared absorption photonics Quantum Devices for multiple vibrational modes imaging (DANCE-QD)
开发用于多振动模式成像的表面增强红外吸收光子量子器件 (DANCE-QD)
  • 批准号:
    2893075
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
    Studentship
Metasurface enhanced and machine learning aided spectrochemical liquid biopsy
超表面增强和机器学习辅助光谱化学液体活检
  • 批准号:
    10647397
  • 财政年份:
    2023
  • 资助金额:
    $ 4.3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了