Synchronized impulsive stimulated Raman scattering to inactivate SARS-CoV-2 for slowing and stopping the transmission of COVID-19

同步脉冲受激拉曼散射可灭活 SARS-CoV-2,从而减缓和阻止 COVID-19 的传播

基本信息

项目摘要

The ongoing COVID-19 pandemic reminds us of the importance of novel medical equipment that could be quickly deployed to inactivate emergent viruses. Such equipment must be able to respond rapidly to new viral diseases when they become apparent, and they should also be intrinsically safe to humans. Up to now, our group has been studying the inactivation of viruses using single, energetic infrared and visible femtosecond laser pulses to induce impulsive stimulated Raman scattering (ISRS), thereby exciting vibrations of the virus capsid. If this vibration is large enough, it breaks the bond in the capsid, thus inactivating the virus itself. However, energetic femtosecond lasers are expensive, and the high cost of such equipment and its large footprint would limit their accessibility. In the proposed project, we hypothesize that large-amplitude vibrations in the virus capsid could also be excited by irradiating a train of ultrashort pulses with picosecond pulse-to-pulse timings that are synchronous with the vibrational period of the capsid (synchronized ISRS). The peak power of such lasers could be several orders of magnitude lower than that currently used by our group, thus significantly reducing their cost. Therefore, the experimental focus of this proposal is (i) to acquire data on the inactivation of SARS-CoV-2 using synchronized ISRS, and (ii) to design equipment that inactivates SARS-CoV-2 based on the data. We will collaborate with few-cycles Inc. (Varennes, QC), a company with significant expertise in ultrashort UV lasers, who are actively seeking to find solutions to slow and stop COVID-19. The outcomes of the proposed research would be safe and relatively inexpensive equipment to inactivate SARS-CoV-2. This equipment could be used to disinfect medical equipment (such as N95 masks) without the use of harmful chemicals or damaging radiation (UVC sterilization has been shown to degrade the integrity of masks). It could also be deployed to critical locations (such as in hospitals, clinics, long-term care facilities) to contain virus transmission.
正在进行的 COVID-19 大流行提醒我们,可以快速部署以灭活新出现的病毒的新型医疗设备的重要性。此类设备必须能够在新的病毒性疾病出现时对其做出快速反应,并且它们对人类也应该是本质安全的。到目前为止,我们的团队一直在研究使用单一高能红外和可见飞秒激光脉冲诱导脉冲受激拉曼散射(ISRS),从而激发病毒衣壳的振动来灭活病毒。如果这种振动足够大,它就会破坏衣壳中的键,从而使病毒本身失活。然而,高能飞秒激光器价格昂贵,此类设备的高成本及其庞大的占地面积将限制其可及性。 在拟议的项目中,我们假设病毒衣壳中的大幅振动也可以通过照射一系列超短脉冲来激发,这些超短脉冲具有与衣壳振动周期同步的皮秒脉冲间定时(同步ISRS)。这种激光器的峰值功率可能比我们小组目前使用的激光器低几个数量级,从而显着降低其成本。因此,本提案的实验重点是(i)使用同步 ISRS 获取 SARS-CoV-2 灭活数据,以及(ii)根据该数据设计灭活 SARS-CoV-2 的设备。我们将与 Few-cycles Inc.(瓦伦斯,QC)合作,该公司在超短紫外激光器方面拥有丰富的专业知识,正在积极寻找减缓和阻止 COVID-19 的解决方案。 拟议研究的成果将是用于灭活 SARS-CoV-2 的安全且相对便宜的设备。该设备可用于对医疗设备(例如 N95 口罩)进行消毒,而无需使用有害化学物质或破坏性辐射(UVC 灭菌已被证明会降低口罩的完整性)。它还可以部署到关键地点(例如医院、诊所、长期护理机构)以遏制病毒传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ozaki, Tsuneyuki其他文献

Accelerated inactivation of M13 bacteriophage using millijoule femtosecond lasers
  • DOI:
    10.1002/jbio.201900001
  • 发表时间:
    2019-11-20
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Berchtikou, Aziz;Greschner, Andrea A.;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Intense terahertz generation from photoconductive antennas
  • DOI:
    10.1007/s12200-020-1081-4
  • 发表时间:
    2021-01-05
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Isgandarov, Elchin;Ropagnol, Xavier;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Subcycle Terahertz Nonlinear Optics
  • DOI:
    10.1103/physrevlett.121.143901
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Chai, Xin;Ropagnol, Xavier;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Terahertz detection using spectral domain interferometry
  • DOI:
    10.1364/ol.37.004338
  • 发表时间:
    2012-10-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Sharma, Gargi;Singh, Kanwarpal;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Frequency domain optical parametric amplification.
  • DOI:
    10.1038/ncomms4643
  • 发表时间:
    2014-05-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Schmidt, Bruno E.;Thire, Nicolas;Boivin, Maxime;Laramee, Antoine;Poitras, Francois;Lebrun, Guy;Ozaki, Tsuneyuki;Ibrahim, Heide;Legare, Francois
  • 通讯作者:
    Legare, Francois

Ozaki, Tsuneyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ozaki, Tsuneyuki', 18)}}的其他基金

Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Femtosecond high Average-power Micro-joule Extreme-Ultraviolet Source (FAMEUS)
飞秒高平均功率微焦极紫外光源(FAMEUS)
  • 批准号:
    565914-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Alliance Grants
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Cutting-edge elliptically and circularly polarized terahertz technology
尖端椭圆和圆偏振太赫兹技术
  • 批准号:
    RTI-2020-00748
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Tools and Instruments
Thz detection using stokes-mueller polarimetry (phase 1)
使用 stokes-mueller 偏振法进行太赫兹检测(第 1 阶段)
  • 批准号:
    505829-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Idea to Innovation
Electrically biased terahertz chemical microscope (Market Assessment)
电偏置太赫兹化学显微镜(市场评估)
  • 批准号:
    545173-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Idea to Innovation
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Unravelling the terahertz electronic properties of graphene for applications in optoelectronics
揭示石墨烯的太赫兹电子特性在光电子学中的应用
  • 批准号:
    494029-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Strategic Projects - Group
Extreme Photonics - from imaging to control -
极限光子学 - 从成像到控制 -
  • 批准号:
    RGPIN-2014-03835
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

海洛因使用障碍个体毒品渴求的临床干预:基于冲动性的视角
  • 批准号:
    32360213
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
煤柱动力失稳诱冲动能理论
  • 批准号:
    52374094
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
GluN2A/ZNT-1复合体调节锌稳态在七氟烷诱发新生大鼠ADHD样冲动行为中的作用及机制
  • 批准号:
    82360245
  • 批准年份:
    2023
  • 资助金额:
    31.5 万元
  • 项目类别:
    地区科学基金项目
极端环境下零维多相防护结构连续多脉冲动力学响应机理及测试技术研究
  • 批准号:
    52375553
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
背外侧前额叶皮层-纹状体环路介导冲动性失抑制在失眠导致自伤中的机制
  • 批准号:
    82301671
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Observation of ultrafast structural change by time-resolved impulsive stimulated Raman spectroscopy
通过时间分辨脉冲受激拉曼光谱观察超快结构变化
  • 批准号:
    15F15336
  • 财政年份:
    2015
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Acquisition of an Impulsive Stimulated Light Scattering (ISLS) system for elasticity and thermal conductivity studies
获取脉冲受激光散射 (ISLS) 系统用于弹性和导热性研究
  • 批准号:
    1053446
  • 财政年份:
    2012
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
Analysis of single cell activity stimulated by femtosecond laser-induced impulsive force
飞秒激光脉冲力刺激单细胞活性分析
  • 批准号:
    22657041
  • 财政年份:
    2010
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Simultaneous Determination of the Time and Space Correlations of Density Fluctuation in Glass Transition of Supercooled Liquid
同时测定过冷液体玻璃化转变中密度涨落的时间和空间相关性
  • 批准号:
    12640365
  • 财政年份:
    2000
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Acoustic Soft-Mode Dispersion by Impulsive Stimulated Brillouin Scattering
脉冲受激布里渊散射声学软模色散研究
  • 批准号:
    03452025
  • 财政年份:
    1991
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了