Extreme Photon Science and Technology with a Twist

扭曲的极限光子科学与技术

基本信息

  • 批准号:
    RGPIN-2019-06811
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Ultrafast laser science has had, and continues to have enormous impact in multiple areas of science and technology. This has clearly been reconfirmed by the recent Nobel Prize in Physics awarded to Prof. Donna Strickland and Prof. Gérard Mourou, "for their method of generating high-intensity, ultra-short optical pulses". The frontiers of ultrafast laser science have continued to expand over the past 30 years, and with it opening new areas of application, which started from basic physics and chemistry, and is now extending to many sectors of importance to Canada, such as energy, pharmaceutics and medicine. My past Discovery Grants have supported a research programme on Extreme Photon Science & Technology (EPST): the science of ultrafast photon sources with extreme characteristics (such as in terms of wavelength, peak intensity and pulse duration), and developing innovative technologies for various applications that take advantage of such unique photon sources. Research in EPST has significantly advanced over the years, especially in the X-ray range (high-order harmonic generation, HHG) and in the far-infrared (terahertz [THz] frequencies). Looking back, it turns out that my approaches to advance EPST have been rather atypical and unconventional, which at first sight might seem to contradict or counter common understandings. In many such cases, such Maverick approaches (with a twist) has led to unexpected outcomes, and in some cases opening up surprising and new opportunities, thus pushing forward the frontiers of EPST. The long-term goal of my research is to pioneer and advance Extreme Photon Science & Technology (EPST), to unravel new knowledge and to apply the research outputs to find solutions to challenges currently faced in various sectors of importance to Canada. To achieve this goal, I propose to further deepen our understandings of the findings obtained from the atypical approaches of my past Discovery grants, as well as to design and study new techniques in EPST with a twist. To this end, the mid-term objectives of the proposed Discovery Grant is (i) to study the interaction of intense THz radiation with various materials (such as DNA, semiconductors and graphene) at unprecedented THz fields and repetition rates, and elucidate their mechanisms; (ii) to study the ultrafast dynamics of autoionizing states via high-order harmonic spectroscopy using HHG from laser ablation plume of various materials; (iii) to develop novel techniques to improve and modify a unique equipment, the THz Chemical Microscope, and apply them for studies in various sectors, such as cancer research, tick-borne disease detection and the treatment of algal toxins. Outcomes of this Discovery programme should not only advance our knowledge, but may also result in innovative methods to detect and monitor metastatic cancer, diagnose Lyme disease, and provide novel methods to control toxins produced by bacteria, which may pollute our water source.
Ultrafast激光科学对诺贝尔·斯特里克兰(Donna Strickland)教授和吉拉德·穆鲁(GérardMourou)教授的最新诺贝尔物理学奖对多个科学和技术领域产生了巨大影响脉搏”。在过去的30年中,超快激光科学的前沿一直在扩展,它开发了新的应用领域,这些领域从基础和化学开始,现在一直延伸到许多对加拿大重要性的领域,例如能源,药物和医学。多年来,EPST的研究已经显着进步,尤其是在X射线范围(高阶谐波生成,HHG)和远红外(频率)中,事实证明我的进步Epst的方法相当乍看之下,这可能与这种特立独行的方法相矛盾 - 我的研究的期限是开拓和促进极端的光子科学与技术(EPST),揭示新知识,并为了找到对加拿大重要性而面对的解决方案。为了进一步加深我们对从我过去的发现赠款的非典型方法获得的发现的理解,关于设计和研究新技术是(i)是(i)研究强烈THZ辐射与各种材料的相互作用(例如DNA,半导体和半导体和半导体,石墨烯在前所未有的THZ领域和重复速率上,并通过高阶谐波光谱使用HHG使用来自各种肥料的材料(III)来开发新技术,以改善雄性设备,例如,癌症研究,壁虱传播疾病检测和藻类的治疗不仅应提高我们的知识,而且还可能导致创新的方法检测和监测转移性癌污染我们的水源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ozaki, Tsuneyuki其他文献

Accelerated inactivation of M13 bacteriophage using millijoule femtosecond lasers
  • DOI:
    10.1002/jbio.201900001
  • 发表时间:
    2019-11-20
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Berchtikou, Aziz;Greschner, Andrea A.;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Intense terahertz generation from photoconductive antennas
  • DOI:
    10.1007/s12200-020-1081-4
  • 发表时间:
    2021-01-05
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Isgandarov, Elchin;Ropagnol, Xavier;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Subcycle Terahertz Nonlinear Optics
  • DOI:
    10.1103/physrevlett.121.143901
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Chai, Xin;Ropagnol, Xavier;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Terahertz detection using spectral domain interferometry
  • DOI:
    10.1364/ol.37.004338
  • 发表时间:
    2012-10-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Sharma, Gargi;Singh, Kanwarpal;Ozaki, Tsuneyuki
  • 通讯作者:
    Ozaki, Tsuneyuki
Frequency domain optical parametric amplification.
  • DOI:
    10.1038/ncomms4643
  • 发表时间:
    2014-05-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Schmidt, Bruno E.;Thire, Nicolas;Boivin, Maxime;Laramee, Antoine;Poitras, Francois;Lebrun, Guy;Ozaki, Tsuneyuki;Ibrahim, Heide;Legare, Francois
  • 通讯作者:
    Legare, Francois

Ozaki, Tsuneyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ozaki, Tsuneyuki', 18)}}的其他基金

Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Femtosecond high Average-power Micro-joule Extreme-Ultraviolet Source (FAMEUS)
飞秒高平均功率微焦极紫外光源(FAMEUS)
  • 批准号:
    565914-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Alliance Grants
Synchronized impulsive stimulated Raman scattering to inactivate SARS-CoV-2 for slowing and stopping the transmission of COVID-19
同步脉冲受激拉曼散射可灭活 SARS-CoV-2,从而减缓和阻止 COVID-19 的传播
  • 批准号:
    555266-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Alliance Grants
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Cutting-edge elliptically and circularly polarized terahertz technology
尖端椭圆和圆偏振太赫兹技术
  • 批准号:
    RTI-2020-00748
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Tools and Instruments
Thz detection using stokes-mueller polarimetry (phase 1)
使用 stokes-mueller 偏振法进行太赫兹检测(第 1 阶段)
  • 批准号:
    505829-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Idea to Innovation
Electrically biased terahertz chemical microscope (Market Assessment)
电偏置太赫兹化学显微镜(市场评估)
  • 批准号:
    545173-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Idea to Innovation
Unravelling the terahertz electronic properties of graphene for applications in optoelectronics
揭示石墨烯的太赫兹电子特性在光电子学中的应用
  • 批准号:
    494029-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Strategic Projects - Group
Extreme Photonics - from imaging to control -
极限光子学 - 从成像到控制 -
  • 批准号:
    RGPIN-2014-03835
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于大科学装置的核光子学前沿讲习班
  • 批准号:
    12147220
  • 批准年份:
    2021
  • 资助金额:
    40 万元
  • 项目类别:
    专项基金项目
光子上转换纳米光敏剂及其在癌症靶向可视化诊治中的关键科学问题
  • 批准号:
    11474278
  • 批准年份:
    2014
  • 资助金额:
    98.0 万元
  • 项目类别:
    面上项目
用于光互连的硅基CMOS光子集成基础科学问题研究
  • 批准号:
    61036002
  • 批准年份:
    2010
  • 资助金额:
    230.0 万元
  • 项目类别:
    重点项目
高亮度、长寿命和热稳定性仿生光子晶体LED关键科学技术研究
  • 批准号:
    50975129
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
光参量准单光子放大技术及其在生命科学,遥感测量等相关领域的应用
  • 批准号:
    60438020
  • 批准年份:
    2004
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目

相似海外基金

Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Multiply-extreme nano-photonics developed by first-principles calculation
第一性原理计算开发的多重极端纳米光子学
  • 批准号:
    20H02649
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Extreme Photon Science and Technology with a Twist
扭曲的极限光子科学与技术
  • 批准号:
    RGPIN-2019-06811
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation for interaction of matter with extreme pulsed light based on first-principles calculations
基于第一性原理计算研究物质与极端脉冲光的相互作用
  • 批准号:
    15H03674
  • 财政年份:
    2015
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了