Computational Methods for Medical Image Interpretation
医学图像解释的计算方法
基本信息
- 批准号:RGPIN-2015-06795
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Digital image data is being generated and collected at an astounding rate for numerous applications such as social media communication, defence and security, industrial manufacturing, agriculture and environment, science and biology, healthcare and medicine, etc. Today, static and dynamic images (video) constitute about 80% of all big data. This big `visual' data hides within it extraordinary amount of information that is critical for providing new insights, building predictive models, guiding decision making, performing search and curation, etc. This is necessitating the design of new computational tools for image analysis that no longer is possible to carry out manually via visual inspection.******The objective of the proposed research is to develop computer methods that address the key challenges towards automated, accurate, robust, and fast image analysis. Specifically, I will develop novel mathematical models and computational techniques for the following fundamental image interpretation tasks, which are necessary for harnessing visual information from raw image data: (i) image segmentation, to partition images into meaningful parts for subsequent quantification and decision making; (ii) image registration, for pair/group-wise image alignment enabling comparative studies and constructing probabilistic models of objects; and (iii) image classification, for discovering discriminatory visual patterns and features for assigning quantitative values or categorical class labels to visual data. More technically, I will focus on optimization-based formulations to solving the above three tasks. I will develop methods to construct the underlying objective functions by combining domain expert knowledge with machine learning techniques (from training databases). I will address the optimizabilty-fidelity tradeoff in these formulations by developing new representations for the unknowns (e.g. object shape geometry) that facilitate efficient optimization and inference.******The complexity and variety of biomedical image data, the challenges facing their automated analysis, and the opportunities they provide for advancing healthcare, make them an ideal application domain for the proposed research. The image interpretation results will be invaluable for supporting diagnostics and therapeutics in many clinical applications. However, two applications will be emphasized given their societal and economic burden: oncology (e.g. organ and tumour delineation for radiation therapy) and neurology (e.g. discovering imaging biomarkers for neuro-development and neuro-degeneration).**
数字图像数据正在以惊人的速度生成和收集,例如社交媒体通信,国防和安全,工业制造,农业和环境,科学与生物学,医疗保健和医学等,如今,静态和动态图像(视频)占所有大数据的80%。这个大的“视觉”数据隐藏在其中,对于提供新的见解,建立预测模型,指导决策,进行搜索和策划等至关重要的信息至关重要。这是必不可少的。这是必不可少的图像分析的新计算工具的设计,以至于不再可以通过视觉研究来实现图像研究的目标,以对计算机进行启发,以自动地进行图像构图,并能够自动地构建精确的挑战。具体而言,我将为以下基本图像解释任务开发新颖的数学模型和计算技术,这对于从原始图像数据中利用视觉信息是必不可少的:(i)图像分割,将图像划分为有意义的部分,以进行后续的量化和决策; (ii)图像注册,用于配对/组的图像对准,实现比较研究并构建对象的概率模型; (iii)图像分类,用于发现歧视性的视觉模式和特征,用于将定量值或分类类标签分配给视觉数据。从技术上讲,我将专注于基于优化的公式来解决上述三个任务。我将通过将域专业知识与机器学习技术(来自培训数据库)相结合,来开发构建基本目标功能的方法。我将通过为未知数(例如对象形状的几何形状)开发新的表述来解决这些配方中的优化依据。图像解释结果对于支持许多临床应用中的诊断和治疗方法将是无价的。但是,考虑到它们的社会和经济负担,将强调两种应用:肿瘤学(例如,用于放射疗法的器官和肿瘤描述)和神经病学(例如,发现神经发展和神经脱位的成像生物标志物)。** **。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hamarneh, Ghassan其他文献
Efficient interactive 3D Livewire segmentation of complex objects with arbitrary topology
- DOI:
10.1016/j.compmedimag.2008.07.004 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:5.7
- 作者:
Poon, Miranda;Hamarneh, Ghassan;Abugharbieh, Rafeef - 通讯作者:
Abugharbieh, Rafeef
MATTHEWS CORRELATION COEFFICIENT LOSS FOR DEEP CONVOLUTIONAL NETWORKS: APPLICATION TO SKIN LESION SEGMENTATION
- DOI:
10.1109/isbi48211.2021.9433782 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:0
- 作者:
Abhishek, Kumar;Hamarneh, Ghassan - 通讯作者:
Hamarneh, Ghassan
Culprit-Prune-Net: Efficient Continual Sequential Multi-domain Learning with Application to Skin Lesion Classification
- DOI:
10.1007/978-3-030-87234-2_16 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:0
- 作者:
Bayasi, Nourhan;Hamarneh, Ghassan;Garbi, Rafeef - 通讯作者:
Garbi, Rafeef
Different facial cues for different speech styles in Mandarin tone articulation
- DOI:
10.3389/fcomm.2023.1148240 - 发表时间:
2023-04-28 - 期刊:
- 影响因子:2.4
- 作者:
Garg, Saurabh;Hamarneh, Ghassan;Wang, Yue - 通讯作者:
Wang, Yue
SCANNER INVARIANT MULTIPLE SCLEROSIS LESION SEGMENTATION FROM MRI
- DOI:
10.1109/isbi45749.2020.9098721 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:0
- 作者:
Aslani, Shahab;Murino, Vittorio;Hamarneh, Ghassan - 通讯作者:
Hamarneh, Ghassan
Hamarneh, Ghassan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hamarneh, Ghassan', 18)}}的其他基金
Deep learning for medical computer vision: Beyond more data and more computing power
医学计算机视觉深度学习:超越更多数据和更强计算能力
- 批准号:
RGPIN-2020-06752 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Deep learning for medical computer vision: Beyond more data and more computing power
医学计算机视觉深度学习:超越更多数据和更强计算能力
- 批准号:
RGPIN-2020-06752 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Deep learning for medical computer vision: Beyond more data and more computing power
医学计算机视觉深度学习:超越更多数据和更强计算能力
- 批准号:
RGPIN-2020-06752 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Computational Methods for Medical Image Interpretation
医学图像解释的计算方法
- 批准号:
RGPIN-2015-06795 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Machine learning and computer vision for plant health
机器学习和计算机视觉促进植物健康
- 批准号:
517528-2017 - 财政年份:2017
- 资助金额:
$ 3.64万 - 项目类别:
Engage Grants Program
Computational Methods for Medical Image Interpretation
医学图像解释的计算方法
- 批准号:
RGPIN-2015-06795 - 财政年份:2017
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Computational Methods for Medical Image Interpretation
医学图像解释的计算方法
- 批准号:
RGPIN-2015-06795 - 财政年份:2016
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Computational Methods for Medical Image Interpretation
医学图像解释的计算方法
- 批准号:
RGPIN-2015-06795 - 财政年份:2015
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Adaptation of image analysis and machine learning concepts to the fine arts industry
将图像分析和机器学习概念应用于美术行业
- 批准号:
469893-2014 - 财政年份:2014
- 资助金额:
$ 3.64万 - 项目类别:
Engage Grants Program
Novel optimization strategies for medical image analysis
医学图像分析的新颖优化策略
- 批准号:
298324-2010 - 财政年份:2014
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于链式拉氏的我国医疗卫生服务综合价格指数构建方法与实证研究
- 批准号:72374052
- 批准年份:2023
- 资助金额:40.00 万元
- 项目类别:面上项目
基于仿真优化的精准医疗方法
- 批准号:72371214
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
医疗健康领域中的变点和阈值估计方法
- 批准号:12301367
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多层次医疗保障体系的罕见病用药价值评估与决策转化:方法构建与实证研究
- 批准号:72374151
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
面向医疗健康数据的隐私保护统计分析和机器学习方法研究
- 批准号:62372425
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Center of Research Translation on Osteoporosis Bone Anabolic Therapies
骨质疏松症骨合成代谢疗法研究转化中心
- 批准号:
10404412 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Computational Strategies to Tailor Existing Interventions for First Major Depressive Episodes to Inform and Test Personalized Interventions
针对首次严重抑郁发作定制现有干预措施的计算策略,以告知和测试个性化干预措施
- 批准号:
10650695 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Applying Computational Phenotypes To Assess Mental Health Disorders Among Transgender Patients in the United States
应用计算表型评估美国跨性别患者的心理健康障碍
- 批准号:
10604723 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Probing Amyloid Fibril Self-Assembly with Network Hamiltonian Simulations in Explicit Space
用显式空间中的网络哈密顿模拟探测淀粉样蛋白原纤维的自组装
- 批准号:
10715891 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
- 批准号:
10749448 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别: