Probing Amyloid Fibril Self-Assembly with Network Hamiltonian Simulations in Explicit Space
用显式空间中的网络哈密顿模拟探测淀粉样蛋白原纤维的自组装
基本信息
- 批准号:10715891
- 负责人:
- 金额:$ 16.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-16 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
Amyloid fibril formation is central to the disease etiology of a number of human diseases, including Alzheimer’s
disease, type 2 diabetes, and a variety of prion diseases. Although molecular structures for thousands of
amyloid fibrils have been resolved using techniques like X-ray crystallography and nuclear magnetic resonance
(NMR), the mechanism of amyloid fibril formation is largely unknown. The mechanism of primary nucleation,
whereby fibril formation begins in a solvent environment that previously did not contain any amyloid fibrils, a
crucial step in amyloid disease onset, is particularly mysterious. Dye-binding fluorescence microscopy
experiments have been used to observe the spontaneous formation fibril formation in microfluidic chambers
from individual primary nucleation sites. These experiments revealed two key mechanistic details: 1) fibril
formation propagated through solution as a traveling wave of constant velocity moving away from the primary
nucleation site, and 2) there exists a linear relationship between the lag time before fibril formation and the
inverse of volume. We hypothesize that the confinement of insulin to smaller volumes is an evolutionary
adaptation that renders amyloid fibril formation prohibitively slow, in turn, influencing the size of insulin
granules in pancreatic beta cells. We will develop novel top-down coarse-grained model that utilize a bridged
approach, whereby two representations of an ensemble of fibril-forming proteins (one purely topological
network representation and one granular representation in explicit space) exchange information as time
evolves. This approach will leverage the high computational efficiency of exponential-family random graph
models (purely topological), with improved spatial realism provided by a minimal explicit space model based on
a Lennard-Jones fluid. The models will first be fit using a threefold validation strategy whereby they will be
parameterized to simultaneously reproduce three known experimental observables: the fibril’s topological
structure (derived from structures reported in the protein data bank), fibril growth kinetics (compared to dye-
binding fluorescence experiments), and the spatial propagation patterns of fibril formation (compared to
aforementioned microfluidic experiments). Analysis of the validated models will then be used to propose
potential mechanisms for primary nucleation, the modulation of which is actively being explored for the
development of preventative treatments for amyloid diseases. The proposed work will require an innovation to
the network Hamiltonian methodology (first introduced by the PI and others), in that it will be the first to include
explicit spatial degrees of freedom. This development will facilitate the comparison of network Hamiltonian
models to experimental results and enhance the predictive power of the simulations, for both the present work
and future studies in molecular self-assembly.
项目摘要/摘要
淀粉样蛋白原纤维形成是许多人类疾病的疾病病因的核心,包括阿尔茨海默氏症
疾病,2型糖尿病和各种疾病。虽然成千上万的分子结构
淀粉样蛋白原纤维已经使用X射线晶体学和核磁共振等技术解决了
(NMR),淀粉样蛋白原纤维形成的机制在很大程度上未知。一级成核的机制,
原纤维形成在以前不包含任何淀粉样纤维的溶液环境中开始
淀粉样蛋白疾病发作的关键步骤特别神秘。染料结合荧光显微镜
实验已用于观察微流体腔中的赞助形成原纤维形成
来自单个主要的成核位点。这些实验揭示了两个关键机械细节:1)原纤维
通过溶液传播的形成是恒定速度远离初级速度的波动波
成核位点和2)在原纤维形成前的滞后时间与
数量倒数。我们假设将胰岛素限制在较小体积上是一种进化
使淀粉样蛋白原纤维形成的适应性依次慢慢地影响胰岛素的大小
胰腺β细胞中的颗粒。我们将开发新颖的自上而下的粗粒模型,该模型利用桥接
方法,通过两种形式的原纤维形成蛋白的代表(一种纯粹的拓扑
网络表示和一个明确空间中的颗粒状表示)交换信息作为时间
进化。这种方法将利用指数式随机图的高计算效率
模型(纯粹是拓扑),具有最小的显式空间模型提供的改进的空间现实主义
Lennard-Jones流体。这些模型将首先使用三倍验证策略适合它们
参数化以简单地复制三个已知的实验可观察物:原纤维的拓扑
结构(源自蛋白质数据库中报道的结构),原纤维生长动力学(与染料相比
结合荧光实验)以及原纤维形成的空间传播模式(与
关于微流体实验)。然后,对经过验证的模型的分析将用于提出
一级成核的潜在机制,正在积极探索其调节
开发淀粉样蛋白疾病的预防性治疗。拟议的工作将需要创新
网络汉密尔顿方法(首先是PI和其他方法),因为它将是第一个包括
明确的空间自由度。这种发展将有助于比较哈密顿网络
实验结果的模型并增强了模拟的预测能力,目前的两项工作
以及未来的分子自组装研究。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
相似国自然基金
基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
- 批准号:82330057
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
间质性肺疾病致肺气体交换功能改变的超极化129Xe MRI定量研究
- 批准号:82372150
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
缺血性脑卒中疾病中NLRP6磷酸化修饰的鉴定及其在调控炎性小体活化中的作用和机制研究
- 批准号:82302474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞清除后骨髓移植延缓csf1r点突变小鼠疾病进展的机制研究
- 批准号:82301526
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据驱动的心血管疾病区域协同医疗服务研究
- 批准号:72301123
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
- 批准号:1073439710734397
- 财政年份:2023
- 资助金额:$ 16.88万$ 16.88万
- 项目类别:
Ultra-low-temperature (6 K) static NMR-DNP for metalloproteins, proteins in cells, and materials
用于金属蛋白、细胞中蛋白质和材料的超低温 (6 K) 静态 NMR-DNP
- 批准号:1054620110546201
- 财政年份:2023
- 资助金额:$ 16.88万$ 16.88万
- 项目类别:
Identifying differences in dynamics and residual structure of intrinsically disordered domains between monomer and fibers: using alpha-synuclein as a model
识别单体和纤维之间本质无序域的动力学和残余结构的差异:使用α-突触核蛋白作为模型
- 批准号:1060732510607325
- 财政年份:2023
- 资助金额:$ 16.88万$ 16.88万
- 项目类别:
Uncovering an Enzymatic Program that Drives Physiological and Pathological Amyloid Formation.
发现驱动生理和病理淀粉样蛋白形成的酶程序。
- 批准号:1057196610571966
- 财政年份:2023
- 资助金额:$ 16.88万$ 16.88万
- 项目类别:
Combining electron and nuclear magnetic resonance to track Alzheimer's amyloid-beta oligomer-to-fibril conversion
结合电子和核磁共振来追踪阿尔茨海默病β淀粉样蛋白寡聚物到原纤维的转化
- 批准号:1066290410662904
- 财政年份:2023
- 资助金额:$ 16.88万$ 16.88万
- 项目类别: