Novel optimization strategies for medical image analysis
医学图像分析的新颖优化策略
基本信息
- 批准号:298324-2010
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2014
- 资助国家:加拿大
- 起止时间:2014-01-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Anatomical and functional medical imaging modalities, e.g. MRI and PET, are allowing physicians to peer inside the human body and observe a wealth of data crucial for understanding, diagnosing and treating diseases. The volume of medical data acquired is growing rapidly. The dimensionality of images has increased from 2D scalar images to dynamic 3D multi-valued fields. This is resulting in image data that cannot be effectively processed with traditional visual inspection. Therefore, automated computational tools for medical image analysis (MIA) are becoming indispensable in modern healthcare systems. The three most important and ubiquitous MIA tasks are image segmentation, registration, and shape analysis, which constitute the crux of image interpretation and quantification tasks. Segmentation is the process of identifying regions of interest in an image (e.g. to measure wall thickness of the myocardium), whereas registration is the process of finding meaningful correspondence between images (e.g. to compare across subjects or time). Shape analysis captures geometric and topological properties and reveals crucial information about disease stages, treatment progress, or growth rates. Despite numerous advances in these areas in the past few decades, accurate and automatic MIA algorithms continue to defy solution. The vast majority of these algorithms rely on solving optimization problems. However, very little work has been devoted to evaluating the appropriateness of the objective functions being optimized or to integrating high-level domain knowledge into the process. This proposal will focus on studying formal approaches for evaluating objective functions and designing them from the outset using rigorous mathematical and computational techniques. This research will also complement low-level optimization techniques with high-level, knowledge-driven MIA strategies using a novel artificial life framework. The goal is to ensure higher accuracy of automated MIA algorithms, in order to advance computer-aided diagnosis, computer-assisted interventions, and the many other aspects of healthcare that rely on medical imaging.
解剖学和功能性医学成像方式,例如MRI和PET允许医生在人体内部凝视,并观察到有关理解,诊断和治疗疾病至关重要的大量数据。获得的医疗数据量正在迅速增长。图像的维度已从2D标量图像增加到动态3D多值字段。这导致图像数据无法通过传统的视觉检查有效处理。因此,在现代医疗保健系统中,自动化的医学图像分析计算工具(MIA)变得必不可少。最重要且无处不在的MIA任务是图像分割,注册和形状分析,构成了图像解释和量化任务的关键。分割是识别图像中感兴趣的区域的过程(例如测量心肌的壁厚),而注册是在图像之间找到有意义的对应关系的过程(例如,比较跨受试者或时间)。形状分析捕获了几何和拓扑特性,并揭示了有关疾病阶段,治疗进度或生长速率的关键信息。尽管在过去几十年中,这些领域的进步都有许多进步,但准确和自动的MIA算法继续反抗解决方案。这些算法中的绝大多数都依赖于解决优化问题。但是,很少有工作专门用于评估被优化的目标函数的适当性或将高级领域知识整合到过程中。该建议将着重于研究正式方法,以评估目标功能并使用严格的数学和计算技术从一开始就设计它们。这项研究还将使用一种新型的人工生命框架与高级,知识驱动的MIA策略相辅相成。目的是确保自动化MIA算法的更高准确性,以推进计算机辅助诊断,计算机辅助干预措施以及依赖医学成像的医疗保健的许多其他方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Hamarneh, Ghassan其他文献
Efficient interactive 3D Livewire segmentation of complex objects with arbitrary topology
- DOI:10.1016/j.compmedimag.2008.07.00410.1016/j.compmedimag.2008.07.004
- 发表时间:2008-12-012008-12-01
- 期刊:
- 影响因子:5.7
- 作者:Poon, Miranda;Hamarneh, Ghassan;Abugharbieh, RafeefPoon, Miranda;Hamarneh, Ghassan;Abugharbieh, Rafeef
- 通讯作者:Abugharbieh, RafeefAbugharbieh, Rafeef
MATTHEWS CORRELATION COEFFICIENT LOSS FOR DEEP CONVOLUTIONAL NETWORKS: APPLICATION TO SKIN LESION SEGMENTATION
- DOI:10.1109/isbi48211.2021.943378210.1109/isbi48211.2021.9433782
- 发表时间:2021-01-012021-01-01
- 期刊:
- 影响因子:0
- 作者:Abhishek, Kumar;Hamarneh, GhassanAbhishek, Kumar;Hamarneh, Ghassan
- 通讯作者:Hamarneh, GhassanHamarneh, Ghassan
Culprit-Prune-Net: Efficient Continual Sequential Multi-domain Learning with Application to Skin Lesion Classification
- DOI:10.1007/978-3-030-87234-2_1610.1007/978-3-030-87234-2_16
- 发表时间:2021-01-012021-01-01
- 期刊:
- 影响因子:0
- 作者:Bayasi, Nourhan;Hamarneh, Ghassan;Garbi, RafeefBayasi, Nourhan;Hamarneh, Ghassan;Garbi, Rafeef
- 通讯作者:Garbi, RafeefGarbi, Rafeef
Different facial cues for different speech styles in Mandarin tone articulation
- DOI:10.3389/fcomm.2023.114824010.3389/fcomm.2023.1148240
- 发表时间:2023-04-282023-04-28
- 期刊:
- 影响因子:2.4
- 作者:Garg, Saurabh;Hamarneh, Ghassan;Wang, YueGarg, Saurabh;Hamarneh, Ghassan;Wang, Yue
- 通讯作者:Wang, YueWang, Yue
SCANNER INVARIANT MULTIPLE SCLEROSIS LESION SEGMENTATION FROM MRI
- DOI:10.1109/isbi45749.2020.909872110.1109/isbi45749.2020.9098721
- 发表时间:2020-01-012020-01-01
- 期刊:
- 影响因子:0
- 作者:Aslani, Shahab;Murino, Vittorio;Hamarneh, GhassanAslani, Shahab;Murino, Vittorio;Hamarneh, Ghassan
- 通讯作者:Hamarneh, GhassanHamarneh, Ghassan
共 84 条
- 1
- 2
- 3
- 4
- 5
- 6
- 17
Hamarneh, Ghassan的其他基金
Deep learning for medical computer vision: Beyond more data and more computing power
医学计算机视觉深度学习:超越更多数据和更强计算能力
- 批准号:RGPIN-2020-06752RGPIN-2020-06752
- 财政年份:2022
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Deep learning for medical computer vision: Beyond more data and more computing power
医学计算机视觉深度学习:超越更多数据和更强计算能力
- 批准号:RGPIN-2020-06752RGPIN-2020-06752
- 财政年份:2021
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Deep learning for medical computer vision: Beyond more data and more computing power
医学计算机视觉深度学习:超越更多数据和更强计算能力
- 批准号:RGPIN-2020-06752RGPIN-2020-06752
- 财政年份:2020
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Computational Methods for Medical Image Interpretation
医学图像解释的计算方法
- 批准号:RGPIN-2015-06795RGPIN-2015-06795
- 财政年份:2019
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Computational Methods for Medical Image Interpretation
医学图像解释的计算方法
- 批准号:RGPIN-2015-06795RGPIN-2015-06795
- 财政年份:2018
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Machine learning and computer vision for plant health
机器学习和计算机视觉促进植物健康
- 批准号:517528-2017517528-2017
- 财政年份:2017
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:Engage Grants ProgramEngage Grants Program
Computational Methods for Medical Image Interpretation
医学图像解释的计算方法
- 批准号:RGPIN-2015-06795RGPIN-2015-06795
- 财政年份:2017
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Computational Methods for Medical Image Interpretation
医学图像解释的计算方法
- 批准号:RGPIN-2015-06795RGPIN-2015-06795
- 财政年份:2016
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Computational Methods for Medical Image Interpretation
医学图像解释的计算方法
- 批准号:RGPIN-2015-06795RGPIN-2015-06795
- 财政年份:2015
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Adaptation of image analysis and machine learning concepts to the fine arts industry
将图像分析和机器学习概念应用于美术行业
- 批准号:469893-2014469893-2014
- 财政年份:2014
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:Engage Grants ProgramEngage Grants Program
相似国自然基金
基于人车双向感知的驾驶人状态调节策略设计与优化
- 批准号:72301151
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
北方地区城市“地块单元”热环境时空格局形成机制及优化策略研究
- 批准号:52300236
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
一维磁性金属核壳结构的电磁优化策略与性能增强机制
- 批准号:22305057
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Spark应用负载特征预测的异构系统能耗优化调度策略
- 批准号:62372064
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DRGs驱动价值医疗背景下的医疗资源整合机制与优化策略研究
- 批准号:72372170
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Novel approach to identify RNA-bound small molecules in vivo
体内鉴定 RNA 结合小分子的新方法
- 批准号:1064662610646626
- 财政年份:2023
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:
Computational Strategies to Tailor Existing Interventions for First Major Depressive Episodes to Inform and Test Personalized Interventions
针对首次严重抑郁发作定制现有干预措施的计算策略,以告知和测试个性化干预措施
- 批准号:1065069510650695
- 财政年份:2023
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:
Activity-based regulome profiling for the discovery of covalent transcription factor inhibitors
基于活性的调节组分析用于发现共价转录因子抑制剂
- 批准号:1060350310603503
- 财政年份:2023
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:
Intracranial Investigation of Neural Circuity Underlying Human Mood
人类情绪背后的神经回路的颅内研究
- 批准号:1066035510660355
- 财政年份:2023
- 资助金额:$ 2.48万$ 2.48万
- 项目类别:
Liver Targeting Dihydroquinolizinone (DHQ) Molecules as Hepatitis B Virus Antivirals with Reduced Toxicity
肝脏靶向二氢喹嗪酮 (DHQ) 分子作为乙型肝炎病毒抗病毒药物,毒性降低
- 批准号:1059356610593566
- 财政年份:2023
- 资助金额:$ 2.48万$ 2.48万
- 项目类别: