Analysis of Mathematical models for the ocean, atmospherics sciences and optics.

海洋、大气科学和光学数学模型分析。

基本信息

  • 批准号:
    RGPIN-2014-03628
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

This project concerns the analysis of Partial Differential Equations arising from quantum mechanics, geometric optics and fluid mechanic. More specifically, it focuses on the one hand on, the Nonlinear Schrödinger and Nonlinear Wave equations (as models for dispersive equations), and on the other hand on, the Navier-Stokes, Boussinesq, the primitive equations and related fluid models.Although the modeling, physical and the computational parts were very well developed for fluid models, the mathematical study did not seem to follow the same stream of progress. Meanwhile and during the last two decades, a tremendous progress has been made in the analysis of dispersive partial differential equations. So that comes the natural question on how one can use and take advantage of those new techniques and tools to further analyze the partial differential equations coming from fluid dynamic. One can already observe the beginning of this in several recent attempts. So the general purpose of this project is to bring together ideas and techniques from these seemingly different kinds of Analysis of PDEs in order to make progress on the mathematical understanding of turbulence and many other relevant physical phenomena.
该项目涉及量子力学,几何光学和流体机械师产生的部分微分方程的分析。更具体地说,它的重点是一只手,非线性schrödinger和非线性波方程(作为分散方程的模型),另一方面,Navier-Stokes,Boussinesq,原始方程式,原始方程式和相关的流体模型。以及计算部件的模型和计算部件以及数学模型的发展非常好。在过去的二十年中,在分散偏微分方程的分析中取得了巨大进步。因此,这是关于如何利用和利用这些新技术和工具进一步分析来自流体动态的部分微分方程的自然问题。在最近的几次尝试中,人们已经可以观察到这一点的开始。因此,该项目的一般目的是从这些看似不同的PDE分析中汇集思想和技术,以便在湍流和许多其他相关物理现象的数学理解方面取得进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ibrahim, Slim其他文献

A Derivation of the Magnetohydrodynamic System from Navier-Stokes-Maxwell Systems
On singularity formation for the two-dimensional unsteady Prandtl system around the axis
绕轴二维非定常普朗特系统奇点形成
Finite-time blowup and ill-posedness in Sobolev spaces of the inviscid primitive equations with rotation
  • DOI:
    10.1016/j.jde.2021.03.037
  • 发表时间:
    2021-03-24
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ibrahim, Slim;Lin, Quyuan;Titi, Edriss S.
  • 通讯作者:
    Titi, Edriss S.
On the Effect of Rotation on the Life-Span of Analytic Solutions to the 3D Inviscid Primitive Equations
Finite-Time Blowup for the Inviscid Primitive Equations of Oceanic and Atmospheric Dynamics
  • DOI:
    10.1007/s00220-015-2365-1
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Cao, Chongsheng;Ibrahim, Slim;Titi, Edriss S.
  • 通讯作者:
    Titi, Edriss S.

Ibrahim, Slim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ibrahim, Slim', 18)}}的其他基金

Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
  • 批准号:
    371637-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
  • 批准号:
    371637-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

统计力学中的数学物理方程
  • 批准号:
    12371218
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
热辐射影响的可压缩流体模型的数学问题研究
  • 批准号:
    12371222
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于数学模型的媒介寄主选择偏好在柑橘黄龙病传播中的作用揭示
  • 批准号:
    12361097
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
基于“效应成分-谱学/药效学/数学关联数据挖掘”整合的银柴胡质量标志物发现研究
  • 批准号:
    82360769
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
具有多平衡态的两类生物数学模型的极限环分岔及其应用
  • 批准号:
    12301215
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Construction of models and analysis/design methods for molecular communication systems considering the distance between molecular robots
考虑分子机器人间距离的分子通信系统模型构建及分析/设计方法
  • 批准号:
    22KJ2683
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
  • 批准号:
    23H01028
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Understanding Rare Genetic Variation and Disease Risk: A Global Neurogenetics Initiative
了解罕见的遗传变异和疾病风险:全球神经遗传学倡议
  • 批准号:
    10660098
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了