Analysis of Mathematical models for the ocean, atmospherics sciences and optics.

海洋、大气科学和光学数学模型分析。

基本信息

  • 批准号:
    RGPIN-2014-03628
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

This project concerns the analysis of Partial Differential Equations arising from quantum mechanics, geometric optics and fluid mechanic. More specifically, it focuses on the one hand on, the Nonlinear Schrödinger and Nonlinear Wave equations (as models for dispersive equations), and on the other hand on, the Navier-Stokes, Boussinesq, the primitive equations and related fluid models. Although the modeling, physical and the computational parts were very well developed for fluid models, the mathematical study did not seem to follow the same stream of progress. Meanwhile and during the last two decades, a tremendous progress has been made in the analysis of dispersive partial differential equations. So that comes the natural question on how one can use and take advantage of those new techniques and tools to further analyze the partial differential equations coming from fluid dynamic. One can already observe the beginning of this in several recent attempts. So the general purpose of this project is to bring together ideas and techniques from these seemingly different kinds of Analysis of PDEs in order to make progress on the mathematical understanding of turbulence and many other relevant physical phenomena.
该项目涉及量子力学、几何光学和流体力学产生的偏微分方程的分析,更具体地说,它一方面关注非线性薛定谔和非线性波动方程(作为色散方程的模型)。手头有纳维-斯托克斯、布辛涅斯克、原始方程和相关流体模型。 尽管流体模型的建模、物理和计算部分已经非常发达,但数学研究似乎并没有遵循同样的进展趋势,同时在过去的二十年中,色散分析方面取得了巨大的进展。因此,一个自然的问题是如何使用和利用这些新技术和工具来进一步分析来自流体动力学的偏微分方程,人们已经可以在最近的几次尝试中观察到这一点。该项目的总体目的是将想法和技术结合在一起从这些看似不同类型的偏微分方程分析中,以便在对湍流和许多其他相关物理现象的数学理解上取得进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ibrahim, Slim其他文献

A Derivation of the Magnetohydrodynamic System from Navier-Stokes-Maxwell Systems
On singularity formation for the two-dimensional unsteady Prandtl system around the axis
绕轴二维非定常普朗特系统奇点形成
Finite-time blowup and ill-posedness in Sobolev spaces of the inviscid primitive equations with rotation
  • DOI:
    10.1016/j.jde.2021.03.037
  • 发表时间:
    2021-03-24
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ibrahim, Slim;Lin, Quyuan;Titi, Edriss S.
  • 通讯作者:
    Titi, Edriss S.
On the Effect of Rotation on the Life-Span of Analytic Solutions to the 3D Inviscid Primitive Equations
Finite-Time Blowup for the Inviscid Primitive Equations of Oceanic and Atmospheric Dynamics
  • DOI:
    10.1007/s00220-015-2365-1
  • 发表时间:
    2015-07-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Cao, Chongsheng;Ibrahim, Slim;Titi, Edriss S.
  • 通讯作者:
    Titi, Edriss S.

Ibrahim, Slim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ibrahim, Slim', 18)}}的其他基金

Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Mathematical models for the ocean, atmospherics sciences and optics.
海洋、大气科学和光学数学模型分析。
  • 批准号:
    RGPIN-2014-03628
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
  • 批准号:
    371637-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of nonlinear evolution problems arising in fluid dynamics, quantum mechanics, optics and other dispersive phenomena
分析流体动力学、量子力学、光学和其他色散现象中出现的非线性演化问题
  • 批准号:
    371637-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

流体及耦合流体方程组的数学理论
  • 批准号:
    12331007
  • 批准年份:
    2023
  • 资助金额:
    193 万元
  • 项目类别:
    重点项目
数学物理问题中正则化模型的不确定性量化分析
  • 批准号:
    12371423
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
胃癌“未病”的生物基础与数学表征
  • 批准号:
    T2341008
  • 批准年份:
    2023
  • 资助金额:
    300 万元
  • 项目类别:
    专项基金项目
高维零磁扩散磁流体力学方程组若干数学问题的研究
  • 批准号:
    12371227
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
HIV-1潜伏库治疗策略的数学建模、分析与应用
  • 批准号:
    12301627
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Construction of models and analysis/design methods for molecular communication systems considering the distance between molecular robots
考虑分子机器人间距离的分子通信系统模型构建及分析/设计方法
  • 批准号:
    22KJ2683
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
  • 批准号:
    23H01028
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Understanding Rare Genetic Variation and Disease Risk: A Global Neurogenetics Initiative
了解罕见的遗传变异和疾病风险:全球神经遗传学倡议
  • 批准号:
    10660098
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了