Mapping cell metabolism in tissues: NADPH/NADP+ redox state in the regulation of cell dedifferentiation, proliferation, and survival.
绘制组织中的细胞代谢图:NADPH/NADP 氧化还原状态对细胞去分化、增殖和存活的调节。
基本信息
- 批准号:RGPIN-2016-06468
- 负责人:
- 金额:$ 2.77万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Metabolism critically governs cell differentiation, survival, and proliferation. To fully understand the links between cell metabolism and these varied responses, we need methods that measure metabolic flux with high temporal and spatial resolution. The Rocheleau Lab has a long-standing interest in combining quantitative fluorescence microscopy and microfluidic devices ("islet-on-a-chip") to measure the metabolism of individual beta-cells within living pancreatic islets. Pancreatic islets are a valuable model system of nutrient-stimulated insulin secretion; yet also offer the opportunity to study the plasticity and survival of primary cells within a tissue. Our previous NSERC funding allowed us to develop a spectrally tunable genetically encoded sensor (Apollo-NADP+) to measure cytoplasmic NADPH/NADP+ redox state. We also recently developed microfluidic devices for highly efficient adenoviral transduction (HEAT), which we can use to express sensor throughout islets. NADPH/NADP+ redox state has been implicated in modulating insulin secretion yet the dynamics of this response are unclear. NADPH/NADP+ redox state also supports proliferation through biosynthetic pathways, and cell survival through the scavenging of reactive oxygen species. To address these cellular responses within a tissue, we will exploit and further develop the Apollo-NADP+ sensor and islet-on-a-chip devices. In particular, we anticipate the spectrally versatile Apollo-NADP+ will allow multiparametric imaging with other genetically encoded sensors, and by further adaptation be used to measure the redox state of various organelles. Our long-term objective is to reveal how the metabolism of individual cells ultimately controls tissue phenotype including stimulus-coupled secretion, proliferation and survival. These studies have three short-term objectives focused on NADPH/NADP+ redox state:
1) Determine the role of NADPH/NADP+ redox state in regulating insulin secretion.
2) Determine whether NADPH/NADP+ redox state is a marker for proliferation.
3) Determine the role of NADPH/NADP+ redox state in the production and scavenging of reactive oxygen species.
This research program critically relies on our ability to transduce primary cells (i.e. cells with normal metabolism) throughout the tissue with a novel genetically encoded sensor. Our focus on islet biology will reveal new insight into the dynamics of NADPH/NADP+ metabolism with direct relevance to diabetes, yet the tools we develop will show facile translation to the study of other tissues and diseases. Finally, our research program will provide HQP advanced training in sensor design, cell biology, quantitative fluorescence microscopy, bioengineering, microfluidic device design, and biophysics, all at the forefront of modern research and highly sought in academic and industrial settings.
代谢严格控制细胞分化,生存和增殖。为了充分理解细胞代谢与这些多样反应之间的联系,我们需要测量具有高时间和空间分辨率的代谢通量的方法。 Rocheleau Lab对将定量荧光显微镜和微流体设备(“ iSlet-on-A-A-Chip”)相结合,以测量活胰岛中个体β细胞的代谢。胰岛是一种有价值的胰岛素分泌的宝贵模型系统。但还提供了研究组织中原代细胞的可塑性和存活的机会。我们以前的NSERC资金使我们能够开发出可调的遗传编码传感器(Apollo-NADP+),以测量细胞质NADPH/NADPH/NADP+氧化还原状态。我们最近还开发了微流体设备,用于高效的腺病毒转导(热),我们可以用来在整个小岛上表达传感器。 NADPH/NADP+氧化还原状态已与调节胰岛素分泌有关,但该反应的动态尚不清楚。 NADPH/NADP+氧化还原状态还通过生物合成途径来支持增殖,并通过清除活性氧。为了解决组织内的这些细胞反应,我们将利用并进一步开发Apollo-NADP+传感器和芯片上的胰岛。特别是,我们预计频谱通用的Apollo-NADP+将允许与其他遗传编码的传感器进行多参数成像,并通过进一步适应来测量各种细胞器的氧化还原状态。我们的长期目标是揭示单个细胞的代谢如何最终控制组织表型,包括刺激偶联的分泌,增殖和存活。这些研究具有三个针对NADPH/NADP+氧化还原状态的短期目标:
1)确定NADPH/NADP+氧化还原状态在调节胰岛素分泌中的作用。
2)确定NADPH/NADP+氧化还原状态是否是增殖的标记。
3)确定NADPH/NADP+氧化还原状态在活性氧物种的产生和清除中的作用。
该研究计划非常依赖于我们在整个组织中使用一种新型的遗传编码传感器转导原代细胞(即具有正常代谢的细胞)的能力。我们对胰岛生物学的关注将揭示对NADPH/NADP+代谢动态的新见解,与糖尿病直接相关,但我们开发的工具将显示出对其他组织和疾病的研究的便捷翻译。最后,我们的研究计划将在传感器设计,细胞生物学,定量荧光显微镜,生物工程,微流体设备设计和生物物理学方面提供HQP高级培训,这些培训都处于现代研究的最前沿以及在学术和工业环境中的最大追捧。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rocheleau, Jonathan其他文献
Rocheleau, Jonathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rocheleau, Jonathan', 18)}}的其他基金
Mapping cellular metabolism in tissues: multi-parameter assays combining live cell fluorescence microscopy and islet/tissue-on-a-chip.
绘制组织中的细胞代谢图谱:结合活细胞荧光显微镜和胰岛/组织芯片的多参数测定。
- 批准号:
DGDND-2022-04454 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Mapping cellular metabolism in tissues: multi-parameter assays combining live cell fluorescence microscopy and islet/tissue-on-a-chip.
绘制组织中的细胞代谢图谱:结合活细胞荧光显微镜和胰岛/组织芯片的多参数测定。
- 批准号:
RGPIN-2022-04454 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Mapping cell metabolism in tissues: NADPH/NADP+ redox state in the regulation of cell dedifferentiation, proliferation, and survival.
绘制组织中的细胞代谢图:NADPH/NADP 氧化还原状态对细胞去分化、增殖和存活的调节。
- 批准号:
RGPIN-2016-06468 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Mapping cell metabolism in tissues: NADPH/NADP+ redox state in the regulation of cell dedifferentiation, proliferation, and survival.
绘制组织中的细胞代谢图:NADPH/NADP 氧化还原状态对细胞去分化、增殖和存活的调节。
- 批准号:
RGPIN-2016-06468 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Mapping cell metabolism in tissues: NADPH/NADP+ redox state in the regulation of cell dedifferentiation, proliferation, and survival.
绘制组织中的细胞代谢图:NADPH/NADP 氧化还原状态对细胞去分化、增殖和存活的调节。
- 批准号:
RGPIN-2016-06468 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Mapping cell metabolism in tissues: NADPH/NADP+ redox state in the regulation of cell dedifferentiation, proliferation, and survival.
绘制组织中的细胞代谢图:NADPH/NADP 氧化还原状态对细胞去分化、增殖和存活的调节。
- 批准号:
RGPIN-2016-06468 - 财政年份:2018
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Mapping cell metabolism in tissues: NADPH/NADP+ redox state in the regulation of cell dedifferentiation, proliferation, and survival.
绘制组织中的细胞代谢图:NADPH/NADP 氧化还原状态对细胞去分化、增殖和存活的调节。
- 批准号:
RGPIN-2016-06468 - 财政年份:2017
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
A high-content multicolour fluorescence anisotropy microscope to systematically assay cellular metabolism using genetically encoded sensors and machine learning.
一种高内涵多色荧光各向异性显微镜,可使用基因编码传感器和机器学习系统地分析细胞代谢。
- 批准号:
RTI-2018-00846 - 财政年份:2017
- 资助金额:
$ 2.77万 - 项目类别:
Research Tools and Instruments
Design and fabrication of a standard to align multicolour TIRF microscopes.
设计和制造校准多色 TIRF 显微镜的标准。
- 批准号:
487070-2015 - 财政年份:2015
- 资助金额:
$ 2.77万 - 项目类别:
Engage Grants Program
Examining cellular metabolism using two-photon and confocal microscopy of NAD(P)H and flavin autofluorescence
使用 NAD(P)H 和黄素自发荧光的双光子共聚焦显微镜检查细胞代谢
- 批准号:
371705-2010 - 财政年份:2014
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
- 批准号:82301707
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于空间代谢组学研究海马星形细胞Mysm1介导TCA循环及ATP产能在电针抗抑郁中的作用
- 批准号:82305420
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核苷酸代谢酶氧化修饰调控上皮干细胞命运在口腔白斑病光动力治疗复发中的机制与意义研究
- 批准号:82330029
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
AhR通过增强CPT1A活性介导脂代谢变化促进肝细胞癌进展的机制研究
- 批准号:82302892
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNF31通过厚壁菌代谢产物3-氧代胆碱酸调控RORγ信号轴抑制Th17细胞分化—溃疡性结肠炎干预新靶点
- 批准号:82360112
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Genetic mapping of the inflammatory adaption circuit in epithelial stem cells
上皮干细胞炎症适应回路的遗传图谱
- 批准号:
10713508 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Evaluation of smoking-associated genes in disparate Appalachian head and neck cancer
不同阿巴拉契亚头颈癌吸烟相关基因的评估
- 批准号:
10741961 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别:
Lysosomal control of plasma membrane -endoplasmic reticulum membrane contacts regulates neuronal excitability
溶酶体控制质膜-内质网膜接触调节神经元兴奋性
- 批准号:
10622184 - 财政年份:2023
- 资助金额:
$ 2.77万 - 项目类别: