Genetic mapping of the inflammatory adaption circuit in epithelial stem cells
上皮干细胞炎症适应回路的遗传图谱
基本信息
- 批准号:10713508
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAffectBiologyCRISPR screenCellsChromosome MappingEconomicsFoundationsFutureGenesGeneticGoalsHomeostasisImmuneInfection ControlInflammationInflammatoryInvestigationMetabolismMicroinjectionsMusNatural regenerationOrganellesPersonsPlayPoisonPositioning AttributePublic HealthRoleSolidSystemTechniquesTechnologyTissuesdesignepithelial stem cellfitnessgene discoveryimmune cell infiltrateimmunoregulationin uteroin vivoinflammatory milieuinjury and repairmigrationmouse modelnon-healing woundspreventprogramsrapid detectionself-renewalsensorstem cellsstress tolerancetissue regenerationtoolultrasoundwoundwound environmentwound healing
项目摘要
PROJECT SUMMARY
Epithelial stem cells reside in the major barrier tissues, governing homeostatic regeneration and injury repair. As
long-lived and indispensable cells, epithelial stem cells must endure bouts of inflammation. This ability is
especially critical during wound healing when many immune cells infiltrate the tissue. These immune cells play
important roles in controlling infections and clearing dead cells, but they also release toxic substances and create
a very harsh inflammatory environment for stem cells. It has long been assumed that stem cells are vulnerable
and must be protected within an ‘immune privileged’ niche. However, our recent study challenged this idea. We
have found that, upon wounding, the epithelial stem cells must be mobilized to exit their natural niche and migrate
into a highly inflammatory wounding environment for regenerating the damaged tissue. If stem cells failed to
adapt to inflammation, it could cause nonhealing wounds, which still affect millions of people worldwide, causing
significant economic and public health burdens. It is unclear how epithelial stem cells achieve self-renewal and
differentiation within an inflammatory environment while preventing collateral damage. Addressing this question
will transform our understanding of the fundamental biology underlying cellular fitness, stress tolerance, tissue
homeostasis, barrier integrity, and wound repair. Driven by its importance, the central question of this proposal
is to understand how epithelial stem cells adapt to the inflammatory environment and how this adaptive function
promotes wound repair. A significant gap in technology preventing a thorough understanding of wound healing
and stem cell adaptive functions is the lack of effective tools for rapid gene discovery and mechanistic studies in
mouse models. To overcome this hurdle, in this project, we will adopt an ultrasound-guided in utero microinjection
technique to establish a new experimental framework for rapid, functional, and mechanistic investigation of
genes involved in stem cell adaptation and wound healing directly in live mice. We will leverage this experimental
framework to deploy a full-fledged platform that will place us in a unique position to: first, design in vivo CRISPR
screening platforms and stem cell interactome sensors to dissect how epithelial stem cells can remodel the fate
and activities of surrounding immune cells to build a temporary protective niche, shielding stem cells from
inflammatory damage. Second, we will focus on devising an in vivo Perturb-seq-based framework and
cell/organelle tagging system to identify how epithelial stem cells reprogram their metabolism to tolerate
inflammation. In sum, this proposal has the potential to reveal critical information and build a solid foundation for
future efforts in developing strategies to manage non-healing wounds.
项目摘要
上皮干细胞居住在主要的屏障组织中,管理稳态再生和损伤修复。作为
上皮干细胞必须忍受长期且不可或缺的细胞,必须忍受炎症。这个能力是
当许多免疫细胞浸润组织时,在伤口愈合过程中尤其重要。这些免疫细胞发挥
在控制感染和清除死细胞中的重要作用,但它们也释放有毒物质并创造
干细胞的非常危险的炎症环境。长期以来一直认为干细胞是脆弱的
必须在“免疫特权”的利基市场中受到保护。但是,我们最近的研究挑战了这一想法。我们
已经发现,在获胜后,上皮干细胞必须动员以退出其自然利基并迁移
进入高度炎症的环境,用于再生受损的组织。如果干细胞无法
适应炎症,可能会导致不可治愈的伤口,这仍然会影响全球数百万的人,导致
大量经济和公共卫生伯恩伦斯。目前尚不清楚上皮干细胞如何实现自我更新和
在防止附带损害的同时,在炎症环境中分化。解决这个问题
将改变我们对细胞适应性基本生物学的理解,应激耐受性,组织
稳态,障碍完整性和伤口修复。由其重要性驱动,该提议的核心问题
是要了解上皮干细胞如何适应炎症环境以及这种适应性功能如何
促进伤口修复。技术的显着差距,以防止对伤口愈合有透彻的了解
干细胞自适应功能是缺乏用于快速基因发现和机械研究的有效工具
鼠标模型。为了克服这一障碍,在这个项目中,我们将采用超声引导的子宫对象。
建立一个新的实验框架的技术,用于快速,功能和机械研究
直接在活小鼠中参与干细胞适应和伤口愈合的基因。我们将利用这个实验
部署一个成熟平台的框架,该平台将使我们处于一个独特的位置:首先,设计In Vivo CRISPR
筛选平台和干细胞相互作用的传感器,以剖析上皮干细胞如何重塑命运
以及周围免疫小球的活动,以建立一个临时受保护的利基市场,屏蔽干细胞免受
炎症损害。其次,我们将专注于设计一个基于atturb-seq的体内框架和
细胞/细胞器标记系统,以确定上皮干细胞如何重新编程其代谢以耐受
总而言之,该提案有可能揭示关键信息并为
未来在制定管理非治疗收益的策略方面的努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuxuan Phoenix Miao其他文献
Yuxuan Phoenix Miao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuxuan Phoenix Miao', 18)}}的其他基金
Dissecting Stem Cell Intrinsic Signaling Driving Tumor Relapse from Immunotherapy
剖析干细胞内在信号传导导致免疫治疗肿瘤复发
- 批准号:
10200232 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Dissecting Stem Cell Intrinsic Signaling Driving Tumor Relapse from Immunotherapy
剖析干细胞内在信号传导导致免疫治疗肿瘤复发
- 批准号:
10453675 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Dissecting Stem Cell Intrinsic Signaling Driving Tumor Relapse from Immunotherapy
剖析干细胞内在信号传导导致免疫治疗肿瘤复发
- 批准号:
10227265 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Dissecting Stem Cell Intrinsic Signaling Driving Tumor Relapse from Immunotherapy
剖析干细胞内在信号传导导致免疫治疗肿瘤复发
- 批准号:
9891036 - 财政年份:2019
- 资助金额:
$ 41万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 41万 - 项目类别:
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
- 批准号:
10681951 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Implementation and Implications of Sickle Cell Trait Screening in the NCAA
镰状细胞性状筛查在 NCAA 中的实施及其意义
- 批准号:
10842764 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别: