Topology of Manifolds

流形拓扑

基本信息

  • 批准号:
    RGPIN-2014-05432
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2015
  • 资助国家:
    加拿大
  • 起止时间:
    2015-01-01 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

Geometry is the study of shapes and spaces. The subject of topology is concerned with those features of geometry which remain unchanged after twisting, stretching or other deformations of a geometrical space. It includes such problems as coloring maps, distinguishing knots and classifying surfaces and their higher dimensional analogs. The goal of "large scale" geometry and topology is to understand those intrinsic features of an unbounded space which remain visible after measurements are taken at increasingly large scales. These ideas have many applications including the qualitative study of dynamical systems and of very large data sets and also mathematical problems arising in fundamental modern physics. The proposed research seeks to provide algebraic measures of subtle geometric and topological phenomena that could be relevant to these and other potential applications. The key concepts of a "boundary at infinity" and of "asymptotic dimension" will be explored.
几何是对形状和空间的研究。拓扑学的主题涉及几何空间在扭曲、拉伸或其他变形后保持不变的几何特征。它包括诸如着色图、区分结和分类表面及其高维类似物等问题。 “大规模”几何和拓扑的目标是了解无界空间的那些内在特征,这些特征在以越来越大的尺度进行测量后仍然可见。这些想法有许多应用,包括动力系统和非常大的数据集的定性研究,以及基础现代物理学中出现的数学问题。拟议的研究旨在提供可能与这些和其他潜在应用相关的微妙几何和拓扑现象的代数测量。将探讨“无穷远边界”和“渐近维数”的关键概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicas, Andrew其他文献

Nicas, Andrew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicas, Andrew', 18)}}的其他基金

Topology at all scales
所有尺度的拓扑
  • 批准号:
    RGPIN-2019-05401
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Topology at all scales
所有尺度的拓扑
  • 批准号:
    RGPIN-2019-05401
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Topology at all scales
所有尺度的拓扑
  • 批准号:
    RGPIN-2019-05401
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Topology at all scales
所有尺度的拓扑
  • 批准号:
    RGPIN-2019-05401
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Topology of Manifolds
流形拓扑
  • 批准号:
    RGPIN-2014-05432
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Topology of Manifolds
流形拓扑
  • 批准号:
    RGPIN-2014-05432
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Topology of Manifolds
流形拓扑
  • 批准号:
    RGPIN-2014-05432
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Topology of Manifolds
流形拓扑
  • 批准号:
    RGPIN-2014-05432
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Topology of manifolds
流形拓扑
  • 批准号:
    38057-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Topology of manifolds
流形拓扑
  • 批准号:
    38057-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
  • 批准号:
    2350309
  • 财政年份:
    2024
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
  • 批准号:
    2401403
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
  • 批准号:
    RGPIN-2020-05343
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
ALGEBRAIC TOPOLOGY FOR THE STUDY OF MANIFOLDS
研究流形的代数拓扑
  • 批准号:
    2747348
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了