Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
基本信息
- 批准号:RGPIN-2020-05343
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Groups are mathematical objects developed from a study of symmetries and rigid motions, though in modern research there are many places where groups spring up as a sophisticated way of encoding certain kinds of data. It is natural that one of the challenges, then, is to learn how to extract the data encoded by a group from a study of its algebraic properties. One method of tackling this challenge is to show that your group of interest is isomorphic to (the same as) a subgroup of another group that is better understood. I employ this method in my research, where the common theme is to try to realize a given group as a subgroup of the group of order-preserving homeomorphisms of a low-dimensional space (that is, as a collection of deformations of a low-dimensional object) such as the real line or the circle. More generally, it is sometimes useful to realize the group as a collection of order-preserving functions from an arbitrary ordered set to itself. The goal of this program is then to study the different ways that a group can be realized as subgroups of deformations of the real line, the circle or an ordered set, and to extract algebraic information about a given group from these structures. Of particular importance is the case when a group arises from the study of a 3-dimensional space via a construction known as the "fundamental group". In this case, the goal becomes to extract from the fundamental group information about the topology of the underlying space; and in this direction there are two suspected connections of particular note. First, whether or not the fundamental group of a space is isomorphic to a group of order-preserving deformations of the real line is suspected to be connected with foliations (that is, how to "tightly pack" a space with lower--dimensional spaces). This connection is already understood in a select few cases. It is also conjecturally connected to Heegaard--Floer homology, a powerful new homology theory that has been used over the past decade to resolve many long-standing open questions in the study of 3-dimensional spaces. Together, this package of suspected connections has become known as "the L-space conjecture". One of the primary short-term goals of this program is the development and application of algebraic tools to tackle certain cases of the L-space conjecture. Advances in this direction contribute directly to the ongoing effort in the low-dimensional topology community to relate modern tools and techniques (such as Heegaard-Floer homology) to classical invariants and topological constructions from algebraic topology.
群体是从对称和僵化动作的研究开发的数学对象,尽管在现代研究中,在许多地方,小组作为一种编码某些数据的复杂方式出现。因此,挑战之一是学习如何从对其代数特性的研究中提取组编码的数据。 应对这一挑战的一种方法是表明您的兴趣群是(与)另一组的子组同构(相同),该小组是更好地理解的。我在研究中采用了这种方法,其中一个共同的主题是试图实现一个给定的群体作为低维空间(即低维物体的变形集合)(例如真实线或圆圈)的一组同构同态的子组。更一般而言,有时将小组作为订单保留功能集合从任意有序设置的集合中很有用。然后,该程序的目的是研究一个不同的方式,即可以将组作为真实线,圆或有序集的变形子组实现,并从这些结构中提取有关给定组的代数信息。当一个人通过称为“基本组”的结构研究群体的研究中,这是一个尤为重要的情况。在这种情况下,目标是从有关基础空间拓扑的基本小组信息中提取的目标;在这个方向上,有两个可疑的特定连接。首先,是否怀疑认为,空间的基本组是否与一组订单保留的变形构成同构,以免与叶子相连(也就是说,如何“紧紧打包”一个具有较低维空间的空间)。在几种情况下,已经了解了此连接。它也与Heegaard(Floer同源性)相关,这是一种强大的新同源性理论,在过去十年中已被用于解决三维空间研究中的许多长期开放问题。总之,这种可疑连接的包装已被称为“ L空间猜想”。该计划的主要短期目标之一是开发和应用代数工具来解决L空间猜想的某些情况。在这个方向上的进步直接有助于低维拓扑界的持续努力,以将现代工具和技术(例如Heegaard-loer同源性)与代数拓扑结构的古典不变性和拓扑结构联系起来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clay, Adam其他文献
Clay, Adam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clay, Adam', 18)}}的其他基金
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Low dimensional topology, ordered groups and actions on 1-manifolds
低维拓扑、有序群和 1-流形上的动作
- 批准号:
RGPIN-2020-05343 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ordered groups and 3-manifolds
有序群和 3 流形
- 批准号:
RGPIN-2014-05465 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ordered groups and 3-manifolds
有序群和 3 流形
- 批准号:
RGPIN-2014-05465 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ordered groups and 3-manifolds
有序群和 3 流形
- 批准号:
RGPIN-2014-05465 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ordered groups and 3-manifolds
有序群和 3 流形
- 批准号:
RGPIN-2014-05465 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ordered groups and 3-manifolds
有序群和 3 流形
- 批准号:
RGPIN-2014-05465 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Ordered groups and 3-manifolds
有序群和 3 流形
- 批准号:
RGPIN-2014-05465 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Orderable groups and their applications
可排序组及其应用
- 批准号:
388022-2010 - 财政年份:2011
- 资助金额:
$ 1.97万 - 项目类别:
Postdoctoral Fellowships
Orderable groups and their applications
可排序组及其应用
- 批准号:
388022-2010 - 财政年份:2010
- 资助金额:
$ 1.97万 - 项目类别:
Postdoctoral Fellowships
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
超薄三维拓扑绝缘体的有限尺寸效应和量子自旋霍尔态的探测
- 批准号:12274445
- 批准年份:2022
- 资助金额:56.00 万元
- 项目类别:面上项目
超薄三维拓扑绝缘体的有限尺寸效应和量子自旋霍尔态的探测
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
超高层结构基于拓扑和尺寸优化理论的抗风优化设计研究
- 批准号:51808152
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
考虑散热与不确定性的永磁同步电机转子设计理论与方法
- 批准号:51705268
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Re-examination of classical problems in low-dimensional topology from higher invariants
从更高的不变量重新审视低维拓扑中的经典问题
- 批准号:
23K03110 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New techniques and invariants in low-dimensional topology
低维拓扑中的新技术和不变量
- 批准号:
FT230100092 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
ARC Future Fellowships
Low-dimensional topology and links of singularities
低维拓扑和奇点链接
- 批准号:
2304080 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant