ALGEBRAIC TOPOLOGY FOR THE STUDY OF MANIFOLDS
研究流形的代数拓扑
基本信息
- 批准号:2747348
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A (3d) topological quantum field theory (TQFT) is a symmetric monoidal functor V between the tensor 1-category of 2+1 bordisms (possibly with some extra data) and the tensor 1-category of vector spaces over a fixed field equipped with the tensor product. The objects in the category of bordisms are closed 2-dimensional surfaces, and the morphisms between them are given by 3-dimensional manifolds whose boundary is the disjoint union of the surfaces in consideration. The tensor product is given by the disjoint union of surfaces. Such a TQFT gives invariants of closed 3-dimensional manifolds as well as of mapping class groups of surfaces. Indeed, considering the empty set as a closed surface, every 3-dimensional closed manifold M is a morphism from the empty set to itself. Therefore, V(M) is a linear endomorphism of V(empty set), thus yielding an invariant. A similar argument produces the invariant for mapping class groups.A modular tensor category C is a finite (possibly non-semisimple) ribbon category satisfying some extra hypotheses. In 1995, Lyubashenko showed how, given a modular tensor category C, one could construct and invariant of closed 3-manifolds LC as well as an invariant of mapping class groups of surfaces L'C. It is then reasonable to ask whether there exists a (non-semisimple) TQFT producing such invariants. It turns out that there cannot exist a TQFT VC producing the invariant of manifolds LC for C non-semisimple. Indeed, if M is a 3-dimensional closed oriented 3-manifold with non-zero first Betti number, then LC(M) = 0. This implies that, given a closed surface S, dim(VC(S)) = LC(SxS1) = 0, and so VC = 0.However, de Renzi, Gainutdinov, Geer, Patureau-Mirand and Runkel constructed in 2021, out of a modular tensor category C, a TQFT producing Lyubashenko's invariant for mapping class groups L'C. Obviously, such a TQFT also carries an invariant of closed 3-manifolds. Actually, from their construction it is apparent that one gets one such invariant for every projective object P of C. Recall that a projective object is such for which the functor Hom(P,-): C -> Ab is exact. To the best of our knowledge, these invariants have not been studied yet. In particular, it is interesting to know how often they are trivial and whether any of them is useful in practice. It is also interesting to relate such characteristics to the properties of the projective object P in C giving each of these invariants. This project falls within the EPSRC foundations and rigorous treatments.
A(3D)拓扑量子场理论(TQFT)是在2+1个bordism的张量1类(可能带有一些额外的数据)和配备有张量产品的固定场上的张量1类别的向量空间之间的对称单函数V。边界类别中的对象是封闭的二维表面,它们之间的形态是由三维歧管给出的,其边界是考虑到的表面的脱节结合。张量产品由表面的不交互结合给出。这样的TQFT给出了封闭的3维流形以及映射表面类群组的不变性。实际上,考虑到空的集合是封闭的表面,每个3维闭合的歧管M是从空集到自身的形态。因此,V(M)是V(空集)的线性内态性,因此产生了不变性。一个类似的参数会产生用于映射类组的不变性。模块化张量类别C是一种有限的(可能是非偏simimple)的功能区类别,可满足一些额外的假设。 1995年,Lyubashenko展示了如何在模块化张量C类C的情况下如何构建和不变的3个Manifolds LC,以及映射L'C表面类别组的不变性。然后是合理的,询问是否存在产生这种不变性的(非偏simimple)TQFT。事实证明,不能存在为c nonemisimple产生歧管LC不变的TQFT VC。 Indeed, if M is a 3-dimensional closed oriented 3-manifold with non-zero first Betti number, then LC(M) = 0. This implies that, given a closed surface S, dim(VC(S)) = LC(SxS1) = 0, and so VC = 0.However, de Renzi, Gainutdinov, Geer, Patureau-Mirand and Runkel constructed in 2021, out of a modular张量C类C,TQFT产生Lyubashenko的不变型,用于映射l'C的班级组。显然,这样的TQFT还带有封闭的3个manifolds的不变。实际上,从他们的构造中可以明显看出,每个投影对象p都会使一个不变。回想一下,一个投影对象就是这样的函数hom(p, - ):c-> ab是准确的。据我们所知,尚未研究这些不变的人。特别是,很有趣的是知道它们的频率是小时候,以及它们中的任何一个在实践中是否有用。将这种特征与C在C中的投影对象P的属性相关联,这也很有趣。该项目属于EPSRC基础和严格的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Metal nanoparticles entrapped in metal matrices.
- DOI:
10.1039/d1na00315a - 发表时间:
2021-07-27 - 期刊:
- 影响因子:4.7
- 作者:
- 通讯作者:
Stunting as a Risk Factor of Soil-Transmitted Helminthiasis in Children: A Literature Review.
- DOI:
10.1155/2022/8929025 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Aspirin use is associated with decreased inpatient mortality in patients with COVID-19: A meta-analysis.
- DOI:
10.1016/j.ahjo.2022.100191 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
- DOI:
10.1007/978-3-662-55754-9_2 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
- DOI:
10.3969/j.issn.1674-764x.2010.02.010 - 发表时间:
2010-06 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
融合拓扑挖掘与可解释机器学习的配电网馈线模型衍生方法
- 批准号:52307121
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
拓扑结构增益的增量式多视图表征学习理论与方法研究
- 批准号:62306010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于粒子模拟和机器学习方法的单链动态拓扑缠结的理论研究
- 批准号:22373022
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于拓扑结构自学习张量分解的多时相遥感图像去云方法
- 批准号:62301456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于量子化学拓扑理论和机器学习方法的RNA动态极化分子力场研究
- 批准号:22373043
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Study of the topology and the combinatorics of polyhedral products
多面体积的拓扑和组合学研究
- 批准号:
22K03284 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
AI-based platform for predicting emerging vaccine-escape variants and designing mutation-proof antibodies
基于人工智能的平台,用于预测新出现的疫苗逃逸变异并设计防突变抗体
- 批准号:
10446127 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
AI-based platform for predicting emerging vaccine-escape variants and designing mutation-proof antibodies
基于人工智能的平台,用于预测新出现的疫苗逃逸变异并设计防突变抗体
- 批准号:
10619001 - 财政年份:2022
- 资助金额:
-- - 项目类别: