Topology at all scales
所有尺度的拓扑
基本信息
- 批准号:RGPIN-2019-05401
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometry is the study of shapes and spaces. The subject of topology is concerned with those features of geometry which remain unchanged after twisting, stretching or other deformations of a geometrical space. It includes such problems as coloring maps, distinguishing knots and classifying surfaces and their higher dimensional analogs. The goal of "large scale" geometry and topology is to understand those intrinsic features of an unbounded space which remain visible after measurements are taken at increasingly large scales. These ideas have many applications including the qualitative study of dynamical systems, the analysis of very large data sets, and also mathematical problems arising in fundamental modern physics. The proposed research seeks to provide tangible measures of subtle geometric and topological phenomena that could be relevant to these and other potential applications. The key concept of "finite decomposition complexity", which involves fundamental notions of size and distance, and also the geometric and topological theory of "virtual and welded knots and links" together with their intrinsic symmetries will be explored.
几何是形状和空间的研究。拓扑的主题与几何特征有关,这些特征在扭曲,拉伸或几何空间的其他变形后保持不变。它包括着色图,区分结和分类表面及其较高尺寸的类似物等问题。 “大规模”几何形状和拓扑的目的是了解无限空间的固有特征,该特征在越来越大的尺度下进行测量后仍然可见。这些想法有许多应用,包括对动态系统的定性研究,非常大的数据集的分析以及在现代物理基本物理学中引起的数学问题。拟议的研究旨在提供可能与这些潜在应用和其他潜在应用相关的微妙几何和拓扑现象的切实测量。涉及大小和距离的基本概念的“有限分解复杂性”的关键概念,以及“虚拟和焊接结和链接”的几何和拓扑理论以及它们的内在对称性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicas, Andrew其他文献
Nicas, Andrew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicas, Andrew', 18)}}的其他基金
Topology at all scales
所有尺度的拓扑
- 批准号:
RGPIN-2019-05401 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topology at all scales
所有尺度的拓扑
- 批准号:
RGPIN-2019-05401 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topology at all scales
所有尺度的拓扑
- 批准号:
RGPIN-2019-05401 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topology of Manifolds
流形拓扑
- 批准号:
RGPIN-2014-05432 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topology of Manifolds
流形拓扑
- 批准号:
RGPIN-2014-05432 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topology of Manifolds
流形拓扑
- 批准号:
RGPIN-2014-05432 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topology of Manifolds
流形拓扑
- 批准号:
RGPIN-2014-05432 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topology of Manifolds
流形拓扑
- 批准号:
RGPIN-2014-05432 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topology of manifolds
流形拓扑
- 批准号:
38057-2009 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Topology of manifolds
流形拓扑
- 批准号:
38057-2009 - 财政年份:2012
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Sensing the gap: Expressions of crop stress from molecular to landscape scales
感知差距:从分子到景观尺度的作物胁迫表达
- 批准号:
MR/Y034252/1 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Fellowship
CAREER: Bridging Sea Ice Dynamics from Floe to Basin Scales
职业:弥合从浮冰到盆地尺度的海冰动力学
- 批准号:
2338233 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Hyporheic Zone Reaction Enhancement by Bioclogging Across Scales
合作研究:研究跨尺度生物堵塞增强潜流区反应
- 批准号:
2345366 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
Developing Teaching Tools to Promote Transfer of Core Concept Knowledge Across Biological Scales and Sub-disciplines.
开发教学工具以促进跨生物尺度和子学科的核心概念知识的转移。
- 批准号:
2336776 - 财政年份:2024
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant