Metric geometry and analysis on Einstein manifolds

爱因斯坦流形的度量几何和分析

基本信息

  • 批准号:
    2304818
  • 负责人:
  • 金额:
    $ 22.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Metric Riemannian geometry is a central subject in modern mathematics. The original concept dates back to Bernhard Riemann's famous Habilitation lecture "Ueber die hypothesen, welche der Geometrie zu Grunde liegen" (On the hypotheses which lie at the bases of geometry) delivered on 10 June 1854. The revolutionary creations in this lecture profoundly changed the global landscape of geometry. Specifically, Riemann proposed a novel strategy to generalize the geometry of surfaces to higher dimensions which he called Mannigfaltigkeiten (manifolds). A large variety of new notions and concepts were created: these include the notion of curvature which quantitatively measures how a space is curved, and the notion of geodesic which is a length-minimizing path connecting two points on a manifold. The studies of the metric structures of manifolds, what we now call metric Riemannian geometry, primarily focuses on the interplay between the global geometry of the underlying space and the metric structure, namely how the distance between two points can be realized or measured. This project is mainly concerned with the metric geometry of Einstein manifolds where the metric structures satisfy the Einstein equation in the theory of general relativity. The PI will integrate their research with training and mentorship at a variety of levels. This includes organizing summer workshops and mathematical retreats on Riemannian geometry; complex geometry and theoretical physics, and designing and developing new research oriented courses for undergraduate students. This project investigates the degenerations and quantitative behaviors of Einstein manifolds. In joint work with Song Sun, the PI has been working on the collapsing geometry of Einstein manifolds with special holonomy, leading to two major breakthroughs in the field: a complete classification of the Gromov-Hausdorff limits of the Einstein metrics on the K3 manifold, and a complete classification of asymptotic model geometries of gravitational instantons. The latter can be regarded as the bubble limits of the degenerating Einstein metrics on the K3 manifold. Building on this background, the PI will proceed to analogous questions in higher dimensions and investigate geometric structures for the degenerating Einstein metrics with generic holonomy in that setting. With a group of collaborators, the PI will also make advances in more refined geometry and moduli space problems regarding complete Calabi-Yau metrics. In a third direction, the PI will investigate the geometry and analysis of Poincare-Einstein spaces, which originated from the AdS/CFT correspondence in mathematical physics. The PI will focus on the singularity behaviors of degenerate operators on Poincare-Einstein manifolds, geometric finiteness and quantitative rigidity of Poincare-Einstein metrics, as well as regularity and degeneration theory of Poincare-Einstein metrics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
度量黎曼几何是现代数学的中心学科。最初的概念可以追溯到伯恩哈德·黎曼 (Bernhard Riemann) 于 1854 年 6 月 10 日发表的著名的训练讲座“Ueber die假设,welche der Geometrie zu Grunde liegen”(论几何基础上的假设)。这场讲座中的革命性创造深刻地改变了几何的全球景观。具体来说,黎曼提出了一种新颖的策略,将表面的几何形状推广到更高的维度,他称之为 Mannigfaltigkeiten(流形)。人们创造了各种各样的新概念:其中包括定量测量空间弯曲方式的曲率概念,以及连接流形上两点的长度最小化路径的测地线概念。对流形度量结构的研究,即我们现在所说的度量黎曼几何,主要关注基础空间的全局几何与度量结构之间的相互作用,即如何实现或测量两点之间的距离。该项目主要研究爱因斯坦流形的度量几何,其度量结构满足广义相对论中的爱因斯坦方程。 PI 将把他们的研究与各个级别的培训和指导结合起来。 这包括组织黎曼几何夏季研讨会和数学静修会;复杂几何和理论物理,并为本科生设计和开发新的研究型课程。该项目研究爱因斯坦流形的简并和定量行为。课题负责人与孙松合作,致力于具有特殊完整性的爱因斯坦流形的塌陷几何研究,取得了该领域的两项重大突破:K3流形上爱因斯坦度量的格罗莫夫-豪斯多夫极限的完整分类,以及引力瞬子渐近模型几何的完整分类。后者可以被视为 K3 流形上简并爱因斯坦度量的气泡极限。 在此背景下,PI 将继续研究更高维度的类似问题,并研究该环境中具有通用完整性的退化爱因斯坦度量的几何结构。与一组合作者一起,PI 还将在有关完整 Calabi-Yau 度量的更精细的几何和模空间问题上取得进展。第三个方向,PI将研究庞加莱-爱因斯坦空间的几何和分析,其起源于数学物理中的AdS/CFT对应关系。 PI 将重点关注简并算子在庞加莱-爱因斯坦流形上的奇点行为、庞加莱-爱因斯坦度量的几何有限性和定量刚性,以及庞加莱-爱因斯坦度量的正则性和简并理论。该奖项反映了 NSF 的法定使命,并已被通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruobing Zhang其他文献

Investigation of spectral bandwidth of BBO-I phase matching non-collinear optical parametric amplification from visible to near-infrared
BBO-I相位匹配非共线光参量放大可见光到近红外光谱带宽研究
  • DOI:
    10.1007/s12200-008-0014-4
  • 发表时间:
    2008-10-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bo Liu;Ruobing Zhang;Huagang Liu;Jing Ma;Chen Zhu;Qing
  • 通讯作者:
    Qing
J-domain protein chaperone circuits in proteostasis and disease.
蛋白质稳态和疾病中的 J 结构域蛋白伴侣电路。
  • DOI:
    10.1016/j.tcb.2022.05.004
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Ruobing Zhang;D. Malinverni;D. Cyr;P. Rios;Nadinath B. Nillegoda
  • 通讯作者:
    Nadinath B. Nillegoda
Inactivation Effects of PEF on Horseradish Peroxidase (HRP) and Pectinesterase (PE)
PEF 对辣根过氧化物酶 (HRP) 和果胶酯酶 (PE) 的灭活作用
  • DOI:
    10.1109/tps.2006.884800
  • 发表时间:
    2006-12-19
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Ruobing Zhang;Lun Cheng;Liming Wang;Z. Guan
  • 通讯作者:
    Z. Guan
TokenUnify: Scalable Autoregressive Visual Pre-training with Mixture Token Prediction
TokenUnify:具有混合标记预测的可扩展自回归视觉预训练
  • DOI:
    10.48550/arxiv.2405.16847
  • 发表时间:
    2024-05-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yinda Chen;Haoyuan Shi;Xiaoyu Liu;Te Shi;Ruobing Zhang;Dong Liu;Zhiwei Xiong;Feng Wu
  • 通讯作者:
    Feng Wu
Mitochondrial proteins that connected with calcium: do their pathways changes in PAH?
与钙相关的线粒体蛋白:它们的途径在 PAH 中是否会发生变化?
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruobing Zhang
  • 通讯作者:
    Ruobing Zhang

Ruobing Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruobing Zhang', 18)}}的其他基金

Geometric Analysis of Einstein Manifolds and Their Generalizations
爱因斯坦流形的几何分析及其推广
  • 批准号:
    2212818
  • 财政年份:
    2021
  • 资助金额:
    $ 22.23万
  • 项目类别:
    Continuing Grant
Geometric Analysis of Einstein Manifolds and Their Generalizations
爱因斯坦流形的几何分析及其推广
  • 批准号:
    1906265
  • 财政年份:
    2019
  • 资助金额:
    $ 22.23万
  • 项目类别:
    Continuing Grant

相似国自然基金

椭球几何学与任意高斯投影数学分析
  • 批准号:
    41871376
  • 批准年份:
    2018
  • 资助金额:
    57.5 万元
  • 项目类别:
    面上项目
西秦岭北缘断裂带新生代构造变形几何学-运动学分析及构造变形演化
  • 批准号:
    41772215
  • 批准年份:
    2017
  • 资助金额:
    69.0 万元
  • 项目类别:
    面上项目
南海古双峰-笔架造山带构造几何学重建
  • 批准号:
    41476039
  • 批准年份:
    2014
  • 资助金额:
    93.0 万元
  • 项目类别:
    面上项目
离散数学中的样条方法研究
  • 批准号:
    11301060
  • 批准年份:
    2013
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
样条函数在离散数学中的应用
  • 批准号:
    11226326
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
  • 批准号:
    10655174
  • 财政年份:
    2023
  • 资助金额:
    $ 22.23万
  • 项目类别:
Analysis and Geometry in Metric Spaces
度量空间中的分析和几何
  • 批准号:
    2154918
  • 财政年份:
    2022
  • 资助金额:
    $ 22.23万
  • 项目类别:
    Standard Grant
Likelihood analysis for cluster point processes and elucidation of geometric structure of TextilePlot
聚类点过程的似然分析和 TextilePlot 几何结构的阐明
  • 批准号:
    19K11865
  • 财政年份:
    2019
  • 资助金额:
    $ 22.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry and analysis on metric measure spaces based on the theory of Markov processes and optimal mass transport
基于马尔可夫过程和最优传质理论的几何与度量测度空间分析
  • 批准号:
    17H02846
  • 财政年份:
    2017
  • 资助金额:
    $ 22.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis and geometry of metric measure spaces
度量测度空间的分析和几何
  • 批准号:
    1812879
  • 财政年份:
    2017
  • 资助金额:
    $ 22.23万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了