Design of Silicon Carbide Surface-Micromachined Capacitive-based Transducers for Non-Destructive Testing Applications
用于无损检测应用的碳化硅表面微机械电容式传感器的设计
基本信息
- 批准号:489265-2015
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ultrasonic transducers are seeing widespread use in low-intensity applications such as medical imaging, non-destructive testing and ranging, or in high-intensity ones like cleaning and liquid emulsification. For decades, piezoelectric transducers have been the workhorse in ultrasonics. However, capacitive transducers are currently attracting significant interest. A unique advantage over their piezoelectric counterpart lies in their lower mechanical impedance, offering the potential for a better impedance match with low-density fluidic media such as air. The operation of such transducers is also much less sensitive to temperature. Capacitive micro-machined ultrasonic transducers (CMUTs) are usually integrated closely with their interface electronic circuits forming complete stand-alone ultra-compact systems. This can allow ultrasonic systems to be integrated in handheld devices. The research group of Prof. Nabki has developed a novel Silicon Carbide CMUT, and demonstrated a proof of concept prototype showcasing the device's potential, and gaining the interest of Olympus Corporation, an international company with many R&D operations in Canada. Olympus operates in industrial, medical and consumer markets, and specializes in optics, electronics and precision engineering, with products deployed in Canada and around the world. Notably, Olympus is a world-leading manufacturer of innovative non-destructive testing (NDT) instruments that are used in industrial and research applications. It has a large operation in Quebec City of about 400 people, which handles R & D and production. Throughout this Engage project, Olympus is planning to explore and develop the different CMUT practical parameters (voltages, optimal frequency, device dimensions etc.) needed to perform ultrasonic NDT as done within Olympus sensors. A CMUT design optimisation for NDT will be carried out and a prototype is planned to be fabricated using a fast prototyping and manufacturing approach, using our previously published technology. The prototype will be tested extensively, and compared with existing Olympus NDT ultrasonic sensors. This project will provide training for two HQP, namely one PhD student and one postdoctoral fellow.
超声波换能器广泛应用于医疗成像、无损检测和测距等低强度应用,或清洁和液体乳化等高强度应用。几十年来,压电换能器一直是超声波领域的主力。然而,电容式传感器目前引起了人们的极大兴趣。与压电对应物相比,其独特的优势在于其机械阻抗较低,从而有可能与空气等低密度流体介质实现更好的阻抗匹配。这种传感器的操作对温度也不太敏感。电容式微机械超声换能器 (CMUT) 通常与其接口电子电路紧密集成,形成完整的独立超紧凑系统。这可以使超声波系统集成到手持设备中。 Nabki 教授的研究小组开发了一种新型碳化硅 CMUT,并展示了概念验证原型,展示了该设备的潜力,并引起了奥林巴斯公司的兴趣,奥林巴斯公司是一家在加拿大拥有许多研发业务的国际公司。奥林巴斯在工业、医疗和消费市场开展业务,专注于光学、电子和精密工程,产品遍布加拿大和世界各地。值得注意的是,奥林巴斯是世界领先的创新无损检测 (NDT) 仪器制造商,其产品用于工业和研究应用。它在魁北克市拥有约 400 名员工的大型工厂,负责研发和生产。在这个 Engage 项目中,奥林巴斯计划探索和开发执行超声波 NDT 所需的不同 CMUT 实用参数(电压、最佳频率、设备尺寸等),就像在奥林巴斯传感器中完成的那样。将进行 NDT 的 CMUT 设计优化,并计划使用我们之前发布的技术,使用快速原型设计和制造方法来制造原型。该原型将进行广泛的测试,并与现有的奥林巴斯无损检测超声波传感器进行比较。该项目将为两名HQP提供培训,即一名博士生和一名博士后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nabki, Frederic其他文献
Nabki, Frederic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nabki, Frederic', 18)}}的其他基金
Wireless Microsystems for Augmented Machine and Human Intelligence
用于增强机器和人类智能的无线微系统
- 批准号:
RGPIN-2022-04228 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Wireless Microsystems for Augmented Machine and Human Intelligence
用于增强机器和人类智能的无线微系统
- 批准号:
RGPIN-2022-04228 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Compact and Energy Efficient Wireless Microelectromechanical Sensing Systems
紧凑且节能的无线微机电传感系统
- 批准号:
RGPIN-2016-04871 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Compact and Energy Efficient Wireless Microelectromechanical Sensing Systems
紧凑且节能的无线微机电传感系统
- 批准号:
RGPIN-2016-04871 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Compact non-invasive ultrasonic flow and wind speed sensors based on micromachined ultrasonic transducers compatible with above-IC integration
基于与 IC 集成兼容的微机械超声换能器的紧凑型非侵入式超声流量和风速传感器
- 批准号:
543712-2019 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Compact non-invasive ultrasonic flow and wind speed sensors based on micromachined ultrasonic transducers compatible with above-IC integration
基于与 IC 集成兼容的微机械超声换能器的紧凑型非侵入式超声流量和风速传感器
- 批准号:
543712-2019 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Compact non-invasive ultrasonic flow and wind speed sensors based on micromachined ultrasonic transducers compatible with above-IC integration
基于与 IC 集成兼容的微机械超声换能器的紧凑型非侵入式超声流量和风速传感器
- 批准号:
543712-2019 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Compact non-invasive ultrasonic flow and wind speed sensors based on micromachined ultrasonic transducers compatible with above-IC integration
基于与 IC 集成兼容的微机械超声换能器的紧凑型非侵入式超声流量和风速传感器
- 批准号:
543712-2019 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Compact and Energy Efficient Wireless Microelectromechanical Sensing Systems
紧凑且节能的无线微机电传感系统
- 批准号:
RGPIN-2016-04871 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Compact and Energy Efficient Wireless Microelectromechanical Sensing Systems
紧凑且节能的无线微机电传感系统
- 批准号:
RGPIN-2016-04871 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
旱作水稻/大豆间作以硅促磷的根-土互作机理
- 批准号:32301449
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光催化烯醇硅醚的串联环化反应及其在贝壳杉烷型天然产物合成中的应用
- 批准号:22371192
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多尺度功能基元构筑的硅铝氧化物复合薄膜的高效吸附机理
- 批准号:22378088
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
层状粘土限域单原子“金属-氮/氧硅”配位结构调控及其强化过硫酸盐氧化过程研究
- 批准号:22308194
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
硬硅钙石、磷灰石基复合材料中富镁非晶间质相结构构建与强韧化机制研究
- 批准号:52302095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Enabling clinical tissue microstructure imaging as a diagnostic tool in wide-bore 3T MRI
将临床组织微观结构成像作为大口径 3T MRI 的诊断工具
- 批准号:
10640750 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Novel coated nanostructured implant surfaces to increase osseointegration and decrease peri-implantitis in a physiologic rat model
新型涂层纳米结构种植体表面可增加生理大鼠模型中的骨整合并减少种植体周围炎
- 批准号:
10645782 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Regenerative Ultramicroelectrode arrays for sensory-motor specific interfacing
用于感觉运动特定接口的再生超微电极阵列
- 批准号:
10317852 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Regenerative Ultramicroelectrode arrays for sensory-motor specific interfacing
用于感觉运动特定接口的再生超微电极阵列
- 批准号:
10661741 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Regenerative Ultramicroelectrode arrays for sensory-motor specific interfacing
用于感觉运动特定接口的再生超微电极阵列
- 批准号:
10475261 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别: