Coxeter groups and related structures
考克塞特群及相关结构
基本信息
- 批准号:355458-2013
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2015
- 资助国家:加拿大
- 起止时间:2015-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My primary area of research is algebraic combinatorics. It is a highly active area of mathematics, with many connections to algebraic geometry, convex geometry, representation theory, topology, mathematical physics and statistical mechanics, among many others. I am more precisely interested on the combinatorial and geometrical aspects of the study of Coxeter (mirror reflection) groups and their related structures. Coxeter groups appear in very many domains of mathematics, for instance, as symmetry groups of regular polytopes, as Weyl groups of semi-simple Lie algebras and Kac-Moody algebras, and as triangle groups in geometry (Euclidean and hyperbolic). Properties of these groups are often key to the understanding of related structures.
It is well-established that root systems are fundamental in the theory of Coxeter groups. While finite and affine root systems have been given a lot of attention, almost nothing is known for general infinite root systems. I have uncovered recently, with J.-P.~Labbé (Berlin), V.~Ripoll (UQAM), an exciting new approach that consists in the study of the limit points of roots, opening up a large program of research in several directions, each worthy of independant study. These directions go from applications to Kac-Moody algebras to analogs of generalized associahedra in the infinite case and include generalizations of weak order on root systems. whereas generalized associahedra are fundamental geometric objects in the study of cluster algebras, whose ramifications extend to physics, thermodynamics and statistics. I plan to exploit my research. Another line of research I will pursue relate Coxeter groups with the study of Descent algebras. Descent algebras are key ingredients in an enriched version of the representation theory of finite Coxeter groups. I plan to uncover this enriched structure by exploiting my past work on symmetric groups and hyperoctahedral groups, together with a new idea based on a "type D Hopf algebra".
我的主要研究领域是代数组合学。它是数学高度活跃的领域,与代数几何形状,凸几何,表示理论,拓扑,数学物理学和统计力学等有许多联系。我对Coxeter研究(镜像)组及其相关结构的研究的组合和几何方面更加精确感兴趣。 Coxeter组出现在数学的许多领域中,例如,作为常规多型的对称组,如半简单的lie代数和KAC-MOODY代数,以及几何形状(欧几里得和双胞胎)中的三角形基团。这些组的特性通常是对相关结构的理解的关键。
良好建立的根系在Coxeter群体的理论中是基础。尽管有限和仿射根系受到了很多关注,但几乎没有任何一般无限根系所知道的。我最近发现了J.-P。〜labbé(柏林),V。这些方向从无限情况下从应用到KAC-MOODY代数到广义联想的类似物,包括对根系的弱点的概括。而广义的联想是群集代数研究中的基本几何对象,其影响扩展到物理,热力学和统计数据。我计划利用我的研究。我将通过对下降代数的研究进行相关的Coxeter组。下降代数是有限的Coxeter组的代表理论的重要版本中的关键因素。我计划通过利用我过去的对称群体和高核心群的工作以及基于“ D型Hopf代数”的新想法来揭示这种丰富的结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hohlweg, Christophe其他文献
Hohlweg, Christophe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hohlweg, Christophe', 18)}}的其他基金
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
- 批准号:
RGPIN-2018-04615 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
- 批准号:
RGPIN-2018-04615 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
- 批准号:
RGPIN-2018-04615 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
- 批准号:
RGPIN-2018-04615 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
- 批准号:
RGPIN-2018-04615 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Coxeter groups and related structures
考克塞特群及相关结构
- 批准号:
355458-2013 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Coxeter groups and related structures
考克塞特群及相关结构
- 批准号:
355458-2013 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Coxeter groups and related structures
考克塞特群及相关结构
- 批准号:
355458-2013 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Coxeter groups and related structures
考克塞特群及相关结构
- 批准号:
355458-2013 - 财政年份:2013
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics of coxeter groups and relations with their relative structures
coxeter 群的组合及其与相关结构的关系
- 批准号:
355458-2008 - 财政年份:2012
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
有关跨音速激波及接触间断的若干偏微分方程问题
- 批准号:11371141
- 批准年份:2013
- 资助金额:50.0 万元
- 项目类别:面上项目
与变分法有关的非线性椭圆型方程及方程组问题
- 批准号:11171028
- 批准年份:2011
- 资助金额:35.0 万元
- 项目类别:面上项目
钝顶螺旋藻全基因组中与环境胁迫应答有关的sRNA的寻找及调控网络研究
- 批准号:31071115
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
托莫西汀治疗注意缺陷多动障碍反应预测有关的基因多态研究
- 批准号:30800302
- 批准年份:2008
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
与薛定鄂方程有关的非线性椭圆问题的变分方法
- 批准号:10801013
- 批准年份:2008
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Coxeter groups and related structures
考克塞特群及相关结构
- 批准号:
355458-2013 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Topological studies on cohomology of Artin groups and related topics
Artin群上同调的拓扑研究及相关话题
- 批准号:
17K05237 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of generalized quantum groups, Coxeter groupoids and related topics
广义量子群、Coxeter 群胚及相关主题的研究
- 批准号:
16K05095 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coxeter groups and related structures
考克塞特群及相关结构
- 批准号:
355458-2013 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Coxeter groups and related structures
考克塞特群及相关结构
- 批准号:
355458-2013 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual