Applications of algebra and topology to constraint satisfaction problems

代数和拓扑在约束满足问题中的应用

基本信息

  • 批准号:
    238899-2006
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2010
  • 资助国家:
    加拿大
  • 起止时间:
    2010-01-01 至 2011-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有摘要-Aucun Sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Larose, Benoît其他文献

Larose, Benoît的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Larose, Benoît', 18)}}的其他基金

Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to the study of fine-grained computational complexity of constraint satisfaction problems
代数在研究约束满足问题的细粒度计算复杂性中的应用
  • 批准号:
    238899-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra and topology to constraint satisfaction problems
代数和拓扑在约束满足问题中的应用
  • 批准号:
    238899-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebra to graph theory and computational complexity
代数在图论和计算复杂性中的应用
  • 批准号:
    238899-2001
  • 财政年份:
    2005
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

研究模空间的代数拓扑方法及其在同伦论、凝聚态物理和时间序列分析中的应用
  • 批准号:
    12371069
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
多自由参数时滞系统完全稳定性问题:代数几何方法和拓扑学视角
  • 批准号:
    62303100
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
重型模锻装备运行能耗分布的代数拓扑/图网络模型与机液系统协同优化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
拓扑动力系统上的广群算子代数
  • 批准号:
    12271469
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
重型模锻装备运行能耗分布的代数拓扑/图网络模型与机液系统协同优化
  • 批准号:
    52275397
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目

相似海外基金

Calculations of representation categories of quantum groups by linear skein theory and its applications to quantum topology
线性绞丝理论计算量子群表示范畴及其在量子拓扑中的应用
  • 批准号:
    19K14528
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Representation Varieties, Representation Homology, and Applications in Algebra, Geometry, and Topology
合作研究:表示簇、表示同调以及在代数、几何和拓扑中的应用
  • 批准号:
    1702323
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Symplectic geometry and contact topology for manifolds with boundary and its applications
有边界流形的辛几何与接触拓扑及其应用
  • 批准号:
    17F17318
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Representation Varieties, Representation Homology, and Applications in Algebra, Geometry, and Topology
合作研究:表示簇、表示同调以及在代数、几何和拓扑中的应用
  • 批准号:
    1702372
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Computational methods in equivariant topology with applications in discrete problems
等变拓扑计算方法及其在离散问题中的应用
  • 批准号:
    26800043
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了