Collaborative Research: Representation Varieties, Representation Homology, and Applications in Algebra, Geometry, and Topology
合作研究:表示簇、表示同调以及在代数、几何和拓扑中的应用
基本信息
- 批准号:1702323
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum models are playing an increasingly important role in physics and other natural sciences. Geometric spaces that parametrize approximations of quantum objects by matrices are therefore an important tool in the study of several models of natural phenomena. Not surprisingly, these spaces play a crucial role in several areas of mathematics and mathematical physics. Unfortunately, such spaces are often difficult to study since they are usually not smooth enough. Intuitively speaking, this means that they have too many edges and corners. This project is centered on a tool that refines these spaces in a way that appears to overcome many of these difficulties. The work is anticipated to lead to new insights into several questions where such spaces play a role. It also unifies several research areas by focusing on applications of this tool in different parts of mathematics, in addition to further developing this tool as an end in itself. In earlier work, the investigators constructed a derived version of representation varieties of associative algebras by extending the representation functor to differential graded (DG) algebras and deriving it in the sense of non-abelian homological algebra. This gives a new homology theory for algebras, called representation homology. This project aims to give a new construction of representation homology of associative algebras in terms of classical (abelian) homological algebra and also extend it to other structures of topological nature. This should lead to various applications in geometry and topology and open the way to efficient computations. A number of precise conjectures regarding the structure of representation homology of classical spaces will be investigated. In addition, the investigators will attack some well-known hard problems in representation theory (such as the strong MacDonald conjecture) using new topological methods.
量子模型在物理和其他自然科学中起着越来越重要的作用。因此,通过矩阵参数量子对象近似的几何空间是研究几种自然现象模型的重要工具。毫不奇怪,这些空间在数学和数学物理学的多个领域中起着至关重要的作用。不幸的是,这种空间通常很难学习,因为它们通常不够光滑。从直觉上讲,这意味着它们的边缘和角落太多。 该项目集中在一个工具上,该工具以似乎克服了许多困难的方式来完善这些空间。预计这项工作将导致对此类空间发挥作用的几个问题的新见解。除了进一步开发该工具本身之外,它还专注于该工具在数学的不同部分中的应用,从而统一了几个研究领域。在较早的工作中,研究人员通过将表示函数扩展到差分(DG)代数并以非亚伯同源代数的意义来构建了联想代数的表示形式。这给出了代数的新同源理论,称为代表同源性。该项目的目的是在古典(Abelian)同源代数方面对联想代数的代表同源性进行新的形式结构,并将其扩展到拓扑性质的其他结构。这应该导致几何和拓扑中的各种应用,并为有效的计算开辟道路。将研究许多有关经典空间代表同源性结构的确切猜想。此外,研究人员将使用新的拓扑方法来攻击代表理论(例如强大的麦克唐纳猜想)中的一些众所周知的硬问题。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Representation Homology of Topological Spaces
拓扑空间的表示同调
- DOI:10.1093/imrn/rnaa023
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Berest, Yuri;Ramadoss, Ajay C;Yeung, Wai-Kit
- 通讯作者:Yeung, Wai-Kit
Representation homology of simply connected spaces
简单连通空间的表示同调
- DOI:10.1112/topo.12231
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Yuri Berest, Ajay C.
- 通讯作者:Yuri Berest, Ajay C.
Vanishing theorems for representation homology and the derived cotangent complex
表示同调性的消失定理和导出的余切复形
- DOI:10.2140/agt.2019.19.281
- 发表时间:2019
- 期刊:
- 影响因子:0.7
- 作者:Berest, Yuri;Ramadoss, Ajay;Yeung, Wai-kit
- 通讯作者:Yeung, Wai-kit
Hodge decomposition of string topology
- DOI:10.1017/fms.2021.26
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Y. Berest;A. Ramadoss;Yining Zhang
- 通讯作者:Y. Berest;A. Ramadoss;Yining Zhang
共 4 条
- 1
相似国自然基金
图表示学习辅助的精准可信药物推荐研究
- 批准号:62306014
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
认知原理启发的训练仿真系统战场空间表示方法研究
- 批准号:62306329
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动作表示与生成模型及人类反馈强化学习的智能运动教练研究
- 批准号:62373183
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于连续张量表示的高维数据复原问题研究
- 批准号:12371456
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
治疗肽识别的BERT表示学习机制研究
- 批准号:62371318
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:23131512313151
- 财政年份:2023
- 资助金额:$ 15万$ 15万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: Electoral Systems, Suburbanization, and Representation
合作研究:选举制度、郊区化和代表权
- 批准号:23144332314433
- 财政年份:2023
- 资助金额:$ 15万$ 15万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: HCC: Small: Supporting Flexible and Safe Disability Representation in Social Virtual Reality
合作研究:HCC:小型:支持社交虚拟现实中灵活、安全的残疾表征
- 批准号:23281832328183
- 财政年份:2023
- 资助金额:$ 15万$ 15万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:23131492313149
- 财政年份:2023
- 资助金额:$ 15万$ 15万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: HCC: Small: Supporting Flexible and Safe Disability Representation in Social Virtual Reality
合作研究:HCC:小型:支持社交虚拟现实中灵活、安全的残疾表征
- 批准号:23281822328182
- 财政年份:2023
- 资助金额:$ 15万$ 15万
- 项目类别:Standard GrantStandard Grant