Biomaterial regulation of cell spheroids to synergistically enhance bone healing
细胞球体的生物材料调节协同增强骨愈合
基本信息
- 批准号:8968201
- 负责人:
- 金额:$ 35.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesAffectAlginatesAngiogenic FactorAnimalsApoptosisBindingBiochemicalBiocompatible MaterialsBiological AssayBiomechanicsBone RegenerationCalvariaCell AdhesionCell CommunicationCell Culture TechniquesCell SurvivalCell TherapyCell TransplantationCell TransplantsCell physiologyCellsCouplingDataDefectDevelopmentEndogenous FactorsEngineeringEquilibriumFractureGelGeometryHealedHumanHydrogelsImmunohistochemistryImplantIn SituIn VitroInjectableInjection of therapeutic agentInterventionLigandsMeasuresMechanicsMesenchymalMetabolicMethodsMorbidity - disease rateNatural regenerationOperative Surgical ProceduresOsteogenesisPeptidesPolymersProcessPropertyRGD (sequence)RattusRegulationResearchRodentRoleSiteSourceSpeedStem cellsStromal CellsTestingTherapeuticTissue EngineeringTissuesTransplantationVascularizationVertebral columnbasebiophysical propertiesbonebone healingcellular engineeringcohesioncost effectivecrosslinkdensityhealingimaging modalityimplantationinnovationmonolayerneovascularizationnon-invasive imagingnovel strategiesosteogenicprotein aminoacid sequencepublic health relevancereceptorregenerativerepairedresponsestemtissue regenerationtissue repairtool
项目摘要
DESCRIPTION (provided by applicant): Of the greater than 6 million fractures occurring yearly in the US, up to 20% will result in nonunion or delayed union, thereby requiring intervention for bone regeneration. Mesenchymal stem/stromal cells (MSCs) are an attractive cell source for cell-based therapies of bone healing because of their osteogenic potential and robust secretion of proangiogenic trophic factors. Culture dimensionality has a profound impact on a myriad of cell functions. Compared to dissociated MSCs, our recent data demonstrate that MSC spheroids secrete 100- fold higher levels of angiogenic factors and better resist apoptosis while maintaining osteogenic potential. Spheroid formation is a competition between cohesion and adhesion, and optimizing this balance through the entrapment in engineered biomaterials provides an exciting opportunity to instruct the regenerative potential of MSCs after transplantation. Hydrogel properties such as adhesivity, stiffness, and degradation influence the function of entrapped cells and resulting tissue formation. Alginate is a highly cytocompatible natural polymer that is amenable to control of initial mechanical properties through composition and crosslinking, as well as adhesivity by covalently coupling peptide sequences such as Arg-Gly-Asp (RGD) to the polymer backbone that bind cellular receptors. Thus, alginate hydrogels represent an ideal tool to probe the role of substrate properties on spheroid function. Our central
hypothesis is that the therapeutic potential of MSC spheroids for bone regeneration can be enhanced using alginate hydrogels with engineered biophysical properties. Aim 1. Does adhesion ligand density within alginate hydrogels affect the survival, proangiogenic, and osteogenic potential of entrapped MSC spheroids? We will synthesize alginate hydrogels with varying densities of RGD. The influence of increased adhesion versus cohesion on spheroid function will be determined. Aim 2. Do hydrogel biomechanical properties influence the functional response of entrapped MSC spheroids? Using composite hydrogels with distinct biophysical properties, we will examine the role of substrate stiffness and degradation on survival, proangiogenic and osteogenic potential of entrapped MSC spheroids. Aim 3. Can MSC spheroids transplanted in RGD-modified hydrogels with optimized biophysical properties accelerate bone formation in a critical-sized calvarial bone defect? We will characterize the capacity of MSC spheroids transplanted in RGD-modified alginate hydrogels to accelerate bone repair in an orthotopic defect compared to dissociated MSCs. The role of implanted cells, as well as quality of bone formation will be assessed using noninvasive imaging modalities. The proposed research is innovative because it exploits the balance of cellular aggregation versus adhesion to drive cell fate using an injectable, biodegradable hydrogel to potentiate the reparative potential of MSCs. This research will provide a new approach to drive bone formation in nonhealing or slow healing bone fractures, and the strategies have potential in enhancing the efficacy of materials-based therapies for tissue repair.
描述(由申请人提供):在美国每年发生超过 600 万例骨折中,高达 20% 会导致骨不连或延迟愈合,因此需要进行骨再生干预,间充质干细胞/基质细胞 (MSC) 是一种有吸引力的治疗方法。与分离的细胞相比,其具有成骨潜力和促血管生成营养因子的强劲分泌,因此是基于细胞的骨愈合疗法的细胞来源。 MSCs,我们最近的数据表明,MSC 球体分泌的血管生成因子水平高出 100 倍,并能更好地抵抗细胞凋亡,同时保持成骨潜力。球体形成是内聚力和粘附力之间的竞争,通过工程生物材料的包埋来优化这种平衡提供了令人兴奋的结果。移植后指示间充质干细胞再生潜力的机会海藻酸盐是一种高度细胞相容性的天然聚合物,可通过组成和交联控制初始机械性能,以及通过将精氨酸-甘氨酸-天冬氨酸 (RGD) 等肽序列共价偶联至结合细胞受体的聚合物主链来控制粘附性。因此,藻酸盐水凝胶是探索基质特性对球体功能的作用的理想工具。
假设使用具有工程生物物理特性的藻酸盐水凝胶可以增强 MSC 球体的骨再生治疗潜力。目标 1。藻酸盐水凝胶内的粘附配体密度是否会影响捕获的 MSC 球体的存活、促血管生成和成骨潜力?具有不同 RGD 密度的藻酸盐水凝胶将确定增加的粘附力与内聚力对球体功能的影响。 2. 水凝胶的生物力学特性是否影响捕获的 MSC 球体的功能反应?使用具有独特生物物理特性的复合水凝胶,我们将研究基质硬度和降解对移植到 RGD 中的捕获的 MSC 球体的存活、促血管生成和成骨潜力的作用。具有优化生物物理特性的改良水凝胶可加速临界尺寸颅骨骨缺损的骨形成?我们将表征 MSC 的能力与分离的 MSC 相比,移植到 RGD 修饰的藻酸盐水凝胶中的球体可加速原位缺损的骨修复。将使用非侵入性成像方式评估植入细胞的作用以及骨形成的质量。使用可注射、可生物降解的水凝胶平衡细胞聚集与粘附来驱动细胞命运,以增强 MSC 的修复潜力。在不愈合或愈合缓慢的骨折中驱动骨形成的新方法,这些策略有可能提高基于材料的组织修复疗法的功效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J. Kent Leach其他文献
Spatial localization of endothelial cells in heterotypic spheroids influences Notch signaling
异型球体中内皮细胞的空间定位影响Notch信号传导
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Charlotte E. Vorwald;Shreeya Joshee;J. Kent Leach - 通讯作者:
J. Kent Leach
Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering.
用于组织工程的聚合物纳米纤维支架静电纺丝的进展。
- DOI:
10.1089/ten.teb.2013.0276 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:0
- 作者:
Ganesh C. Ingavle;J. Kent Leach - 通讯作者:
J. Kent Leach
Cell-secreted extracellular matrix, independent of cell source, promotes the osteogenic differentiation of human stromal vascular fraction
- DOI:
10.1039/c7tb02787g - 发表时间:
2018-05 - 期刊:
- 影响因子:7
- 作者:
Jenna N. Harvestine;Hakan Orbay;Jonathan Y. Chen;David E. Sahar;J. Kent Leach - 通讯作者:
J. Kent Leach
In Vitro Models for Studying Transport Across Epithelial Tissue Barriers
研究跨上皮组织屏障运输的体外模型
- DOI:
10.1007/s10439-018-02124-w - 发表时间:
2018-09-14 - 期刊:
- 影响因子:3.8
- 作者:
N. Arumugasaamy;Javier Navarro;J. Kent Leach;Peter C. W. Kim;J. Fisher - 通讯作者:
J. Fisher
Lysophosphatidic Acid and Sphingosine-1-Phosphate: A Concise Review of Biological Function and Applications for Tissue Engineering.
溶血磷脂酸和 1-磷酸鞘氨醇:生物功能及其组织工程应用简述。
- DOI:
10.1089/ten.teb.2015.0107 - 发表时间:
2015-07-14 - 期刊:
- 影响因子:0
- 作者:
Bernard Y. K. Binder;Priscilla A. Williams;Eduardo A. Silva;J. Kent Leach - 通讯作者:
J. Kent Leach
J. Kent Leach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J. Kent Leach', 18)}}的其他基金
ORS-ISFR 17th International Biennial Meeting
ORS-ISFR第17届国际双年会
- 批准号:
10540642 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别:
MUSCLE: MUsculoSkeletal Clinical Learning Experience Transdisciplinary Musculoskeletal Research Training Program
肌肉:肌肉骨骼临床学习体验跨学科肌肉骨骼研究培训计划
- 批准号:
10410848 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别:
MUSCLE: MUsculoSkeletal Clinical Learning Experience Transdisciplinary Musculoskeletal Research Training Program
肌肉:肌肉骨骼临床学习体验跨学科肌肉骨骼研究培训计划
- 批准号:
10612446 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别:
Identifying the superior ossification pathway for tissue engineered approaches to long bone repair
确定组织工程方法修复长骨的最佳骨化途径
- 批准号:
10376368 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Identifying the superior ossification pathway for tissue engineered approaches to long bone repair
确定组织工程方法修复长骨的最佳骨化途径
- 批准号:
10591573 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Identifying the superior ossification pathway for tissue engineered approaches to long bone repair
确定组织工程方法修复长骨的最佳骨化途径
- 批准号:
10230915 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Dual peptide presentation from bioengineered carriers to potentiate stromal cell function and tissue repair
生物工程载体的双肽呈递可增强基质细胞功能和组织修复
- 批准号:
9930177 - 财政年份:2017
- 资助金额:
$ 35.89万 - 项目类别:
Engineering the innate immune response to Staphaureus infection
设计针对葡萄球菌感染的先天免疫反应
- 批准号:
9401775 - 财政年份:2017
- 资助金额:
$ 35.89万 - 项目类别:
Engineering the innate immune response to Staphaureus infection
设计针对葡萄球菌感染的先天免疫反应
- 批准号:
10212940 - 财政年份:2017
- 资助金额:
$ 35.89万 - 项目类别:
Dual peptide presentation from bioengineered carriers to potentiate stromal cell function and tissue repair
生物工程载体的双肽呈递可增强基质细胞功能和组织修复
- 批准号:
9883782 - 财政年份:2017
- 资助金额:
$ 35.89万 - 项目类别:
相似国自然基金
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
聚电解质络合作用调控的高初黏性大豆蛋白粘合剂构建及增强机制研究
- 批准号:52303059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
The Role of Layilin as a Novel Regulator of Platelet Activation and Thromboinflammation
Layilin 作为血小板活化和血栓炎症的新型调节剂的作用
- 批准号:
10638243 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Development of optoelectronically active nerve adhesive for accelerating peripheral nerve repair
开发用于加速周围神经修复的光电活性神经粘合剂
- 批准号:
10811395 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Multi-modality optical imaging of single-cell dynamics using supercontinuum light source
使用超连续谱光源的单细胞动力学多模态光学成像
- 批准号:
10798646 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
- 批准号:
10636089 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Mechanisms underlying a decline in neural stem cell migration during aging
衰老过程中神经干细胞迁移下降的机制
- 批准号:
10750482 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别: