Development of optoelectronically active nerve adhesive for accelerating peripheral nerve repair
开发用于加速周围神经修复的光电活性神经粘合剂
基本信息
- 批准号:10811395
- 负责人:
- 金额:$ 43.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-22 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdhesionsAdhesivesAffectAirAllergic ReactionAminesAutologous TransplantationAxonBasic ScienceBehaviorBiocompatible MaterialsBreathingCatecholsCell ProliferationCell SizeCellsCicatrixConsumptionCovalent InteractionDefectDenervationDevelopmentDevicesDiseaseDistalDopamineDrynessElectric StimulationElectricityEnvironmentExtracellular MatrixFibrin Tissue AdhesiveForeign-Body ReactionGenesGoalsHealth Care CostsHeartHyaluronic AcidHydrogelsIn VitroInflammatoryInjuryIsothiocyanatesLifeLightMicrosurgeryModelingMotorMuscleMuscular AtrophyNatural regenerationNerveNeuritesNeuronsOperative Surgical ProceduresOutputPatientsPerformancePeripheralPeripheral NervesPeripheral nerve injuryPhysiologicalProceduresProcessProliferatingPropertyPublic HealthQuality of lifeQuinonesRationalizationRattusRecoveryRiskSchwann CellsSensorySiliconSkeletal MuscleSpinal GangliaSulfhydryl CompoundsSurgical suturesSwellingSystemTemperatureTestingThickThioureaTimeTissue AdhesivesTissuesWorkaxon growthbiomaterial compatibilitycell behaviorchronic painclinical applicationcohesioncytotoxicitydesigndisabilityfabricationfunctional disabilityhealingimplantationimprovedin vitro activityin vivoinjury and repairinnovationlight intensitymechanical propertiesmetermotor function recoverymotor impairmentnerve damagenerve gapnerve injurynext generationnoveloperationperipheral nerve regenerationperipheral nerve repairperipheral nerve transectionprotein expressionregeneration functionrepairedresponsesciatic nervesocialsubmicrontissue injurytissue regenerationtransmission processwireless
项目摘要
Project Summary
Peripheral nerve (PN) injury represents a major public health problem that leads to functional impairment and
permanent disability. Microsurgical suturing, standard approach for long-gap PN repair, is a time-consuming
procedure and causes nerve damage, inflammatory foreign body reactions, and scar formation, which delay
the PN regeneration. As potential alternatives, tissue adhesives have been developed to reduce operation time
and avoid secondary damages. However, current commercially available tissue adhesives, like fibrin glue and
others, are far from ideal, considering cytotoxicity, tissue compression due to extensive swelling, and poor
mechanical properties. We have developed a novel dual network nerve adhesive (NA) consisting of catechol
modified hyaluronic acid and decellularized peripheral nerve matrix hydrogels. Our NAs illustrated significantly
higher adhesion strength and adhesion force, compared to catechol modified HA only and commercial fibrin
glue. The NAs supported Schwann cell proliferation and improved PN repair after transection injury comparing
to fibrin glue. However, both sensory and motor functions were still incompletely recovered after microsuturing
or NA repair in the transected and long-gap nerve injury models. In this proposal, we will further incorporate
innovative optoelectronic biomaterials (i.e., Si based μ-solar cells) within the NA to develop next generation of
optoelectronically active NAs (optoENAs) for long-gap PN injury regeneration. The Si based μ-solar cells are in
micrometer size, biocompatible, biodegradable, and photo-stimulable to generate sufficient electrical output.
The specific aims of the studies are (1) to develop functional optoENA and determine how the size and
concentration of μ-solar cells affect NA properties and PN related cell behaviors; and (2) to determine whether
and how optoENAs expedite surgical procedures, facilitate autograft implantation, and promote long-gap PN
repair in a rat model. This proposal will develop a novel and clinically applicable tissue adhesive with enhanced
adhesive performance and optoelectronic properties for improving healing and regeneration of long-gap PN
injury.
项目概要
周围神经(PN)损伤是一个重大的公共卫生问题,会导致功能障碍和
显微外科缝合是长间隙 PN 修复的标准方法,非常耗时。
手术并导致神经损伤、炎症性异物反应和疤痕形成,从而延迟
作为潜在的替代方案,组织粘合剂已被开发出来以减少手术时间。
然而,目前市售的组织粘合剂,如纤维蛋白胶和
其他的则远非理想,考虑到细胞毒性、由于广泛肿胀而导致的组织压缩以及较差的
我们开发了一种由儿茶酚组成的新型双网络神经粘合剂(NA)。
改良的透明质酸和脱细胞周围神经基质水凝胶我们的 NA 表现出显着的效果。
与仅儿茶酚修饰的 HA 和商业纤维蛋白相比,具有更高的粘附强度和粘附力
相比之下,NAs 支持雪旺细胞增殖并改善横切损伤后的 PN 修复。
然而,微缝合后感觉和运动功能仍未完全恢复。
或 NA 修复在横切和长间隙神经损伤模型中,我们将进一步纳入。
NA 内的创新光电生物材料(即硅基 μ 太阳能电池),以开发下一代
用于长间隙PN损伤再生的光电活性NA(optoENAs)基于硅的μ太阳能电池。
微米尺寸、生物相容性、可生物降解和可光刺激以产生足够的电力输出。
研究的具体目标是 (1) 开发功能性 optoENA 并确定其大小和大小如何
μ-太阳能电池的浓度影响 NA 特性和 PN 相关的细胞行为;以及 (2) 确定是否
以及 optoENAs 如何加快手术过程、促进自体移植物植入并促进长间隙 PN
该提案将开发一种新型的、临床适用的、具有增强功能的组织粘合剂。
粘合性能和光电性能可改善长间隙 PN 的愈合和再生
受伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Duan其他文献
Bin Duan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Duan', 18)}}的其他基金
Novel Stellate Ganglia Chemo-ablation Approach to Treat Cardiac Arrhythmia and Cardiac Remodeling in Heart Failure
新型星状神经节化疗消融方法治疗心律失常和心力衰竭心脏重塑
- 批准号:
10727929 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
A Hydrogel Ionic Circuit-Based Electrical Stimulation System for Restoration of Denervated Muscles After Peripheral Nerve Injuries
基于水凝胶离子电路的电刺激系统,用于周围神经损伤后失神经肌肉的恢复
- 批准号:
10445353 - 财政年份:2021
- 资助金额:
$ 43.73万 - 项目类别:
A Hydrogel Ionic Circuit-Based Electrical Stimulation System for Restoration of Denervated Muscles After Peripheral Nerve Injuries
基于水凝胶离子电路的电刺激系统,用于周围神经损伤后失神经肌肉的恢复
- 批准号:
10303900 - 财政年份:2021
- 资助金额:
$ 43.73万 - 项目类别:
3D Bioprinting of Biomimetic Constructs for Rotator Cuff Augmentation
用于肩袖增强的仿生结构的 3D 生物打印
- 批准号:
10410435 - 财政年份:2018
- 资助金额:
$ 43.73万 - 项目类别:
3D Bioprinting of Biomimetic Constructs for Rotator Cuff Augmentation
用于肩袖增强的仿生结构的 3D 生物打印
- 批准号:
10188428 - 财政年份:2018
- 资助金额:
$ 43.73万 - 项目类别:
相似国自然基金
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SPP1+M2巨噬细胞促进宫腔粘连内膜纤维化的机制和干预研究
- 批准号:82371636
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
相似海外基金
Atraumatic Non-fibrotic Epicardial Pacing with E-Bioadhesive Devices
使用电子生物粘附装置进行无创伤性非纤维化心外膜起搏
- 批准号:
10637562 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Novel strategies to accelerate repair of drug-induced hepatotoxicity
加速修复药物引起的肝毒性的新策略
- 批准号:
10718314 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Biomolecule releasing adhesive for cell-mediated labral repair
用于细胞介导的盂唇修复的生物分子释放粘合剂
- 批准号:
10736334 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Exploring the therapeutic mechanisms of proinflammatory myelin-laden macrophages retention in the injured spinal lesion core
探索损伤脊髓病变核心中促炎髓磷脂巨噬细胞保留的治疗机制
- 批准号:
10569068 - 财政年份:2022
- 资助金额:
$ 43.73万 - 项目类别:
Alterations of leukocyte integrin signaling leading to diabetes and autoimmunity
白细胞整合素信号的改变导致糖尿病和自身免疫
- 批准号:
10683384 - 财政年份:2022
- 资助金额:
$ 43.73万 - 项目类别: