Microfabricated Implantable Flowmeter for CSF Shunts Phase II
用于脑脊液分流的微型植入式流量计第二阶段
基本信息
- 批准号:8123068
- 负责人:
- 金额:$ 99.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-30 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAnimal ModelAnimal TestingAppearanceCalibrationCerebrospinal fluid shunts procedureCharacteristicsChildChronicClinicalClinical TrialsCouplingCreation of ventriculo-peritoneal shuntDataDepositionDetectionDevelopmentDevicesEarly DiagnosisElectromagneticsEmergency SituationEnsureEnvironmentFailureFlowmetersFrequenciesHydrocephalusImplantIn SituIndiumLaboratoriesLiquid substanceMagnetic Resonance ImagingMapsMeasurableMeasurementMeasuresMethodsMicrofabricationModelingMonitorObstructionOffice VisitsOutputPatientsPerformancePeritonealPhasePhysiologicalPreparationProbabilityProcessPropertyProtocols documentationPumpReadingRelative (related person)ReportingRiskRisk ManagementSafetySensitivity and SpecificitySheepShunt DeviceSpecific qualifier valueSterilizationStructureSymptomsSystemTestingTimeTissuesVariantVisitWireless Technologybasebiomaterial compatibilitycerebrospinal fluid flowdesignelectrical propertyfeedingfluid flowhazardimplantationimplanted sensorin vitro testingmeetingsmetermortalityoperationphantom modelprototyperesearch studysealsensortissue phantom
项目摘要
DESCRIPTION (provided by applicant):
An implantable wireless flow sensor system has been under development that would enable measurement of the flow of cerebrospinal fluid (CSF) through the ventriculoperitoneal (VP) shunt, currently used to treat hydrocephalus patients. CSF flow is a key indicator of shunt function, and there is currently no way to measure it in situ, resulting in the absence of clinical methods to directly assess shunt function or to predict its failure. Using MEMS microfabrication methods, the proposed flow sensor will be manufactured at a size small enough to be integrable with implanted VP shunts. The key elements in the flow meter are capacitive structures that change properties with change in CSF flow. Electromagnetic coupling between the internal passive circuitry and an external handheld circuit allows implantation of the flow sensor without the need for implanted batteries or transcutaneous wires. The proposed Phase II project will build on the encouraging results of Phase I, which demonstrated the wireless interrogation of proof-of-concept MEMS sensors and the presence of a readily measurable relationship of flow to the resonance of the sensor. In Phase II, fully-function flow-sensing MEMS chips will be manufactured, as well as a revised handheld unit that will display and output flow, based on the known relationship between flow rate and resonance. In vitro testing will establish calibration for the sensor implants, and will demonstrate measurement accuracy over the full physiological range of CSF flow, over long periods of time, and with appropriate phantom models. In parallel, a chronic sheep hydrocephalus model will be in preparation, along with implementation of appropriate packaging, biocompatibility, and sterilizability into the sensor implant prototypes, as well as consideration of MR compatibility. Performance of an animal test protocol shall evaluate the sensor in regard to (1) sensitivity and specificity with regard to detection of flow obstruction, (2) CSF flow measurement accuracy, and (3) effect on shunt patency.
PUBLIC HEALTH RELEVANCE:
Every year there are approximately 23,000 shunt revisions performed in the U.S., in order to correct the relatively common failure of ventriculoperitoneal (VP) shunts used to treat hydrocephalus patients. However, children are still dying from shunt failure, and studies indicate that earlier detection would save a large fraction of these children. An implantable, wireless CSF flow meter would enable the clinician to monitor shunt function during routine office visits (rather than waiting for the re-appearance of hydrocephalus symptoms), allowing detection of impending shunt failure, avoidance of lifesaving treatment on an emergency basis, and reduction of mortality associated with VP shunt failure.
描述(由申请人提供):
一种植入式无线流量传感器系统正在开发中,该系统可以测量通过脑室腹膜(VP)分流器的脑脊液(CSF)流量,目前用于治疗脑积水患者。脑脊液流量是分流功能的关键指标,目前尚无方法对其进行原位测量,导致临床上缺乏直接评估分流功能或预测其失败的方法。使用 MEMS 微加工方法,所提出的流量传感器的尺寸将足够小,以便与植入的 VP 分流器集成。流量计的关键元件是电容结构,其特性会随着 CSF 流量的变化而改变。内部无源电路和外部手持式电路之间的电磁耦合允许植入流量传感器,而无需植入电池或经皮电线。拟议的第二阶段项目将建立在第一阶段令人鼓舞的成果的基础上,该项目展示了概念验证 MEMS 传感器的无线询问以及流量与传感器谐振之间存在易于测量的关系。在第二阶段,将制造全功能的流量传感 MEMS 芯片,以及改进的手持单元,该单元将根据流量和共振之间的已知关系来显示和输出流量。体外测试将为传感器植入物建立校准,并将在长时间内并使用适当的体模模型证明脑脊液流量的整个生理范围内的测量准确性。与此同时,还将准备慢性绵羊脑积水模型,并在传感器植入原型中实施适当的包装、生物相容性和灭菌性,并考虑 MR 兼容性。动物测试方案的性能应评估传感器的以下方面:(1) 检测血流阻塞的灵敏度和特异性,(2) 脑脊液流量测量精度,以及 (3) 对分流通畅的影响。
公共卫生相关性:
美国每年大约进行 23,000 例分流修复手术,以纠正用于治疗脑积水患者的脑室腹膜 (VP) 分流术相对常见的失败。然而,仍有儿童因分流失败而死亡,研究表明,及早发现可以挽救大部分儿童的生命。植入式无线脑脊液流量计将使临床医生能够在例行就诊期间监测分流功能(而不是等待脑积水症状再次出现),从而检测即将发生的分流失败,避免紧急情况下的救生治疗,以及降低与 VP 分流失败相关的死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES Hunter GOLDIE其他文献
JAMES Hunter GOLDIE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES Hunter GOLDIE', 18)}}的其他基金
Removable Stents for Neonates with Cyanotic Congenital Heart Disease(CCHD)
适用于患有紫绀型先天性心脏病 (CCHD) 的新生儿的可拆卸支架
- 批准号:
8334860 - 财政年份:2012
- 资助金额:
$ 99.88万 - 项目类别:
Microfabricated Implantable Flowmeter for CSF Shunts
用于脑脊液分流器的微型植入式流量计
- 批准号:
7539699 - 财政年份:2008
- 资助金额:
$ 99.88万 - 项目类别:
Microfabricated Implantable Flowmeter for CSF Shunts Phase II
用于脑脊液分流的微型植入式流量计第二阶段
- 批准号:
8331457 - 财政年份:2008
- 资助金额:
$ 99.88万 - 项目类别:
Bipolar Coagulation of Occluding Tissue in VP Shunts
VP 分流中闭塞组织的双极电凝
- 批准号:
7154165 - 财政年份:2006
- 资助金额:
$ 99.88万 - 项目类别:
Active Bottle for Home Care of Dysphagic Infants
用于吞咽困难婴儿家庭护理的主动奶瓶
- 批准号:
6932930 - 财政年份:2005
- 资助金额:
$ 99.88万 - 项目类别:
Haptically Enhanced Control of Minimally Invasive Tools
微创工具的触觉增强控制
- 批准号:
6886391 - 财政年份:2005
- 资助金额:
$ 99.88万 - 项目类别:
Cephalometer for Rapid, Safe Measurement of Infant Head
用于快速、安全测量婴儿头部的头颅测量仪
- 批准号:
7052601 - 财政年份:2004
- 资助金额:
$ 99.88万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
脆性X综合征动物模型中异常视觉信息处理和视觉注意力的神经环路机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
IgG and FcR Characterization in Small Animal Models of RespiratoryDisease
呼吸道疾病小动物模型中的 IgG 和 FcR 表征
- 批准号:
10678229 - 财政年份:2023
- 资助金额:
$ 99.88万 - 项目类别:
Role of the YAP1-LATS2 negative feedback loop in cervical carcinogenesis
YAP1-LATS2负反馈环路在宫颈癌发生中的作用
- 批准号:
10635529 - 财政年份:2023
- 资助金额:
$ 99.88万 - 项目类别:
Development of a Smart Shunt with ICP-feedback for the Treatment of Hydrocephalus
开发用于治疗脑积水的具有 ICP 反馈的智能分流器
- 批准号:
10699566 - 财政年份:2023
- 资助金额:
$ 99.88万 - 项目类别: