Developing Explainable AI for Equitable Risk Stratification of Atrial Fibrillation and Stroke

开发可解释的人工智能以实现心房颤动和中风的公平风险分层

基本信息

  • 批准号:
    10752585
  • 负责人:
  • 金额:
    $ 5.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Atrial fibrillation (AF) leads to significant morbidity, mortality, and over $6B in annual hospitalization costs among the nearly 6 million US adults it affects. AF is a cardiac arrhythmia which can cause blood to collect in the atria and form clots that travel to the brain resulting in a stroke. Efforts to reduce rates of stroke related to AF are limited by rudimentary stroke risk stratification tools and disparities in care. There is a critical need for personalized, socially aware, equitable stroke risk prediction among patients with AF to enable optimal implementation of contemporary stroke-prevention therapies. The objective of this proposal is to use artificial intelligence (AI) and machine learning methods to capture and quantify synergies among known and newly discovered AF risk factors in socioeconomic contexts. My central hypothesis is that stroke prevention can be improved through methods that leverage computational methods on large datasets augmented with information on social determinants of health (SDoH). Preliminary studies by our group and others have revealed subgroups of patients for whom SDoH factors are critical for accurate risk stratification. Aim 1 is to discover new risk-factor relationships for patients with AF that include SDoH data, using an innovative comorbidity discovery framework (Poisson Binomial Comorbidity Discovery). Aim 2 focuses on building models that combine the variables identified in Aim 1 with established risk factors to predict outcomes using AI methods. To do so, I will build novel Probabilistic Graphical Models (PGMs) to understand the impact of SDoH and newly identified factors on AF-related stroke risk. The primary innovation in this proposal is employing novel analytic approaches to understand and reduce disparities in AF risk prediction models. The proposal aims to provide means for improved care across the spectrum of patients with AF and address disparities in the present standard of care. The AI tools created will be readily accessible and interpretable by clinicians and patients to help guide individual treatment decisions. Completion of this proposal will yield a personalized and equitable approach to stroke prevention in the context of AF. This project provides multidisciplinary computational and clinical training augmented with mentorship from experts in both domains. The outlined training will provide me with the computational and translational cardiology experiences required to succeed as an independent investigator and physician-scientist.
项目概要 心房颤动 (AF) 会导致严重的发病率、死亡率以及每年超过 6B 美元的住院费用 受其影响的近 600 万美国成年人。 AF 是一种心律失常,可导致血液聚集在体内 心房并形成血栓,进入大脑导致中风。降低中风发生率的努力与 房颤受到基本的中风风险分层工具和护理差异的限制。迫切需要 对 AF 患者进行个性化、具有社会意识、公平的中风风险预测,以实现最佳的 实施当代中风预防疗法。 该提案的目标是使用人工智能(AI)和机器学习方法来捕获和 量化社会经济背景下已知和新发现的房颤风险因素之间的协同作用。我的中央 假设可以通过利用计算方法的方法来改善中风预防 在大型数据集上补充了健康社会决定因素(SDoH)的信息。初步研究 我们的团队和其他人已经揭示了 SDoH 因素对于准确风险至关重要的患者亚组 分层。目标 1 是发现 AF 患者的新危险因素关系,包括 SDoH 数据、 使用创新的共病发现框架(泊松二项式共病发现)。目标2 专注于构建模型,将目标 1 中确定的变量与既定风险因素相结合进行预测 使用人工智能方法的结果。为此,我将构建新颖的概率图形模型(PGM)来理解 SDoH 和新发现的因素对 AF 相关中风风险的影响。 该提案的主要创新在于采用新颖的分析方法来理解和减少 房颤风险预测模型的差异。该提案旨在提供改善整个医疗保健的手段 AF 患者的范围​​并解决当前护理标准中的差异。创建的人工智能工具将 临床医生和患者可以轻松获取和解释,以帮助指导个体治疗决策。 该提案的完成将产生一种个性化且公平的中风预防方法 AF。 该项目提供多学科计算和临床培训,并辅以来自 这两个领域的专家。概述的培训将为我提供计算和翻译能力 作为一名独立研究者和医师科学家取得成功所需的心脏病学经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raquel Reisinger其他文献

Raquel Reisinger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

依恋相关情景模拟对成人依恋安全感的影响及机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
  • 批准号:
    81961138012
  • 批准年份:
    2019
  • 资助金额:
    100 万元
  • 项目类别:
    国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
  • 批准号:
    31900778
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 5.27万
  • 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 5.27万
  • 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 5.27万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 5.27万
  • 项目类别:
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
  • 批准号:
    10538513
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了