Bridging Scales to Understand Endogenous Neuromodulation and its Regulation

桥接尺度以了解内源性神经调节及其调节

基本信息

  • 批准号:
    10567073
  • 负责人:
  • 金额:
    $ 59.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-08 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Neuromodulatory nuclei detect and transform brain network activity into simpler signals, then send neurotransmitters back out to large-scale brain networks to change their function. Such nuclei are centrally implicated in mental disorders and adaptive resilience, and their regulation remains an untapped resource for interventions. The purpose of this grant is to understand how neuromodulatory nuclei detect and in turn influence distributed patterns of brain activity to impact behavior. To understand their regulation and effects on brain function, the investigative team has developed novel neuroimaging, behavioral, and analytic methods. These methods include: training participants to endogenously self-regulate dopaminergic midbrain, isolating distinct streams of information in the midbrain over multiple timescales, distinguishing behavioral contexts and network effects associated with univariate activation in neuromodulatory nuclei, and finally relating midbrain activation to memory-conducive states in medial temporal lobe memory systems. Our team has recently developed whole-brain analyses of real-time fMRI during midbrain neurofeedback and machine-learning tools for characterizing nonlinear latent dynamics from high-dimensional data. Now, with these tools, we can relate midbrain activation to whole brain states. We hypothesize 1) that distinct distributed spatiotemporal patterns precede and follow midbrain univariate activation, specify it uniquely among neuromodulatory nuclei, and distinguish sustained from transient midbrain responses; 2) that the evolution of these patterns over the training session will predict learning to upregulate midbrain, and 3) that endogenous midbrain regulation will predict brain and behavioral effects we and others have previously shown to be associated with midbrain activation and dopamine function. If the aims of this project are achieved, we will have introduced a multi-level model of the neural states that support midbrain activation, a complement of methods for regulating midbrain noninvasively, and an improved understanding of its impact on learning and motivated behavior. Reliable cognitive strategies for dynamically and selectively fine-tuning neural networks to suit behavioral contexts will lay the foundation for a wide array of interventions across educational and clinical applications.
神经调节核检测大脑网络活动并将其转化为更简单的信号,然后发送 神经递质返回到大规模的大脑网络以改变其功能。这样的原子核位于中心 与精神障碍和适应性恢复力有关,其调节仍然是未开发的资源 干预措施。这笔赠款的目的是了解神经调节核如何检测并反过来 影响大脑活动的分布式模式以影响行为。了解它们的调节和影响 为了研究大脑功能,研究小组开发了新的神经影像、行为和分析方法。 这些方法包括:训练参与者内源性地自我调节多巴胺能中脑,隔离 中脑在多个时间尺度上的不同信息流,区分行为背景和 与神经调节核的单变量激活相关的网络效应,最后与中脑相关 激活内侧颞叶记忆系统中的记忆传导状态。我们团队最近 开发了中脑神经反馈和机器学习工具期间实时功能磁共振成像的全脑分析 用于表征高维数据的非线性潜在动力学。现在,有了这些工具,我们可以将 中脑激活到全脑状态。我们假设 1) 不同的分布时空模式 在中脑单变量激活之前和之后,在神经调节核中唯一指定它,并且 区分持续和短暂的中脑反应; 2)这些模式的演变 训练课程将预测学习上调中脑,并且 3)内源性中脑调节将 预测我们和其他人之前已证明与中脑相关的大脑和行为影响 激活和多巴胺功能。如果这个项目的目标得以实现,我们将引入多层次的 支持中脑激活的神经状态模型,是调节中脑方法的补充 非侵入性地,并更好地了解其对学习和动机行为的影响。可靠的 动态地、选择性地微调神经网络以适应行为环境的认知策略将 为教育和临床应用的广泛干预措施奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Alison Adcock其他文献

Rachel Alison Adcock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Alison Adcock', 18)}}的其他基金

Duke Impact Neuroscience Program
杜克影响神经科学项目
  • 批准号:
    10713848
  • 财政年份:
    2023
  • 资助金额:
    $ 59.34万
  • 项目类别:
Motivated Memory as Therapeutic Target
动机记忆作为治疗目标
  • 批准号:
    8179688
  • 财政年份:
    2011
  • 资助金额:
    $ 59.34万
  • 项目类别:
Motivated Memory as Therapeutic Target
动机记忆作为治疗目标
  • 批准号:
    8280312
  • 财政年份:
    2011
  • 资助金额:
    $ 59.34万
  • 项目类别:
Motivated Memory as Therapeutic Target
动机记忆作为治疗目标
  • 批准号:
    8451568
  • 财政年份:
    2011
  • 资助金额:
    $ 59.34万
  • 项目类别:
Motivated Memory as Therapeutic Target
动机记忆作为治疗目标
  • 批准号:
    8644932
  • 财政年份:
    2011
  • 资助金额:
    $ 59.34万
  • 项目类别:

相似国自然基金

基于裂隙黄土斜坡模型试验的渐进后退式滑坡成灾机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
嵌入后退式分离的复杂流动干扰与分离动力学研究
  • 批准号:
    U21B2054
  • 批准年份:
    2021
  • 资助金额:
    260 万元
  • 项目类别:
    联合基金项目
滑模与适定运动统一的稳定条件及基于值函数的受约束切换系统控制研究
  • 批准号:
    61773006
  • 批准年份:
    2017
  • 资助金额:
    51.0 万元
  • 项目类别:
    面上项目
干热河谷冲沟沟头后退的水力、重力协同作用机制
  • 批准号:
    41571277
  • 批准年份:
    2015
  • 资助金额:
    74.0 万元
  • 项目类别:
    面上项目
农户异质性、碳汇生产激励与后退耕时代生态补偿机制研究——以黄土高原退耕区为例
  • 批准号:
    71403214
  • 批准年份:
    2014
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Longitudinal Modeling of Pro-Inflammatory Cytokines, Hazardous Alcohol Use, and Cerebral Metabolites as Predictors of Neurocognitive Change in People with HIV
促炎细胞因子、有害酒精使用和脑代谢物的纵向建模作为 HIV 感染者神经认知变化的预测因子
  • 批准号:
    10838849
  • 财政年份:
    2024
  • 资助金额:
    $ 59.34万
  • 项目类别:
Understanding the effects of sleep deprivation on the gut's cellular homeostatic process
了解睡眠不足对肠道细胞稳态过程的影响
  • 批准号:
    10679154
  • 财政年份:
    2023
  • 资助金额:
    $ 59.34万
  • 项目类别:
Initiate Research, Opportunities, and Networks for Underrepresented Early Career Investigators (IRON)
为代表性不足的早期职业研究者启动研究、机会和网络 (IRON)
  • 批准号:
    10797544
  • 财政年份:
    2023
  • 资助金额:
    $ 59.34万
  • 项目类别:
Deep learning for prediction of Mild Cognitive Impairment and Dementia of the Alzheimer's type
深度学习预测轻度认知障碍和阿尔茨海默氏症型痴呆
  • 批准号:
    10662094
  • 财政年份:
    2023
  • 资助金额:
    $ 59.34万
  • 项目类别:
Neuroimaging approaches to improve prediction of smoking initiation and nicotine use escalation among young adult electronic nicotine delivery systems users
神经影像学方法可改善年轻成人电子尼古丁输送系统用户吸烟开始和尼古丁使用升级的预测
  • 批准号:
    10896832
  • 财政年份:
    2023
  • 资助金额:
    $ 59.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了