Harnessing Diverse Bioinformatic Approaches To Repurpose Drugs For Alzheimers Disease And Related Dementias

利用多种生物信息学方法重新利用治疗阿尔茨海默病和相关痴呆症的药物

基本信息

  • 批准号:
    10744875
  • 负责人:
  • 金额:
    $ 105.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-30 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

Abstract The exploration of genomes, transcriptomes, and proteomes derived from brains with Alzheimer's disease (AD) by powerful computational tools has developed new knowledge, including the identification of pathways and targets that may be involved in the initiation and/or progression of the disease. The challenge is to find drugs that impact those pathways and then validate the importance of those pathways – distinguishing primary disease drivers from secondary events. Repurposing FDA-approved drugs is one approach to probe potential pathways in proof of concept, and ultimately therapeutic, clinical trials. In this renewal application, we propose to discover and validate hypotheses for Drug Repurposing In AD (DRIAD) through three integrated, complementary informatics approaches. Specifically, we will extend our systems pharmacology (DRIAD-SP) tool of classical and network aware (prior-loaded) machine learning approaches to identify pathways and targets altered in AD brains at different stages of disease progression using data from Accelerating Medicines Partnership-AD available through Synapse (Aim 1); we will use chemical biology and systems pharmacology approaches to discover the target selectivity of lead kinase inhibitors within human neuronal and glial cell types using unbiased RNA-seq, proteomic and imaging studies followed by pathway analysis (Aim 2). We will implement additional causal inferential strategies to emulate clinical trials in electronic health records (DRIAD- EHR) data (Aim 3), with “prospective” outcomes using three big data sets: the UK-TRE with 20 year of longitudinal records of 50M National Health Service patients, and the RPDR Database (based at Mass General Brigham),and the Clalit database in Israel – each with 6M individuals followed for over 20 years. Each Aim has two approaches: data-driven, hypothesis-generating analyses to discern disease-relevant drug signals; and hypothesis-testing in which positive findings from one approach are evaluated using the other approaches to assess rigor and reproducibility. This coordinated program compensates for the limitations of each individual informatics approach to promote discovery and critical evaluation of “lead compounds” for known and novel AD pathways. To execute this strategy, we have assembled a multi-site, multi-disciplinary team with expertise ranging from clinical care to computer science and systems pharmacology. Some of the team members are AD experts and others bring an outsider's perspective. Finally, as a deliverable, we will continue to produce open- source data packages to release all the supporting evidence, software, and data with provenance in accordance with FAIR (findable, accessible, interoperable and reproducible) standards through Synapse. These data packages have lead to one clinical trial and will help to prioritize follow on clinical and translational studies including collaborations with industry or community members at large involved in new clinical trials.
抽象的 探索阿尔茨海默氏病大脑的基因组、转录组和蛋白质组 (AD)通过强大的计算工具开发了新知识,包括路径的识别 以及可能参与疾病发生和/或进展的靶点。挑战在于找到可能涉及疾病发生和/或进展的靶点。 影响这些途径,然后验证药物这些途径的重要性——区分主要途径 重新利用 FDA 批准的药物是探索次要事件的疾病驱动因素的一种方法。 在这个更新的应用程序中,我们探索了概念验证和最终治疗临床试验的潜在途径。 提议通过三个综合的、 具体来说,我们将扩展我们的系统药理学(DRIAD-SP)。 经典和网络感知(预先加载)机器学习方法的工具,用于识别路径和 使用加速药物的数据,在疾病进展的不同阶段,AD 大脑中的目标发生了变化 通过 Synapse 提供合作伙伴 AD(目标 1);我们将使用化学生物学和系统药理学; 发现人类神经细胞和神经胶质细胞类型中先导激酶抑制剂的靶点选择性的方法 使用无偏见的 RNA 测序、蛋白质组学和成像研究,然后进行通路分析(目标 2)。 实施额外的因果推理策略来模拟电子健康记录中的临床试验(DRIAD- EHR)数据(目标 3),使用三个大数据集得出“预期”结果:具有 20 年历史的 UK-TRE 5000 万国民医疗服务患者的纵向记录,以及 RPDR 数据库(基于麻省总医院) Brigham)和以色列的 Clalit 数据库——每个 Aim 都有 600 万人被跟踪了 20 多年。 两种方法:数据驱动的假设生成分析,以识别与疾病相关的药物信号;以及 假设检验,其中使用其他方法评估一种方法的积极结果 评估严谨性和可重复性。这个协调的计划弥补了每个人的局限性。 信息学方法促进已知和新型AD“先导化合物”的发现和批判性评估 为了执行这一战略,我们组建了一支具有专业知识的多地点、多学科团队。 范围从临床护理到计算机科学和系统药理学,一些团队成员是AD。 最后,作为一个可交付成果,我们将继续提供开放的内容。 源数据包,以发布所有支持证据、软件和数据,其出处为 通过 Synapse 符合 FAIR(可查找、可访问、可互操作和可复制)标准。 这些数据包已导致一项临床试验,并将有助于优先考虑临床和转化的后续工作 研究包括与参与新临床试验的行业或社区成员合作。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AI-assisted prediction of differential response to antidepressant classes using electronic health records.
使用电子健康记录人工智能辅助预测抗抑郁药物类别的差异反应。
  • DOI:
  • 发表时间:
    2023-04-26
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sheu, Yi;Magdamo, Colin;Miller, Matthew;Das, Sudeshna;Blacker, Deborah;Smoller, Jordan W
  • 通讯作者:
    Smoller, Jordan W
causalCmprsk: An R package for nonparametric and Cox-based estimation of average treatment effects in competing risks data.
causalCmprsk:一个 R 包,用于对竞争风险数据中的平均治疗效果进行非参数和基于 Cox 的估计。
  • DOI:
  • 发表时间:
    2023-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vakulenko;Magdamo, Colin;Charpignon, Marie;Zheng, Bang;Albers, Mark W;Das, Sudeshna
  • 通讯作者:
    Das, Sudeshna
Initial antidepressant choice by non-psychiatrists: Learning from large-scale electronic health records.
非精神科医生的初步抗抑郁药物选择:从大规模电子健康记录中学习。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Sheu, Yi;Magdamo, Colin;Miller, Matthew;Smoller, Jordan W;Blacker, Deborah
  • 通讯作者:
    Blacker, Deborah
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK W ALBERS其他文献

MARK W ALBERS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK W ALBERS', 18)}}的其他基金

Towards Universal Chemosensory Testing
迈向通用化学感应测试
  • 批准号:
    10683613
  • 财政年份:
    2023
  • 资助金额:
    $ 105.47万
  • 项目类别:
Towards Universal Chemosensory Testing
迈向通用化学感应测试
  • 批准号:
    10683613
  • 财政年份:
    2023
  • 资助金额:
    $ 105.47万
  • 项目类别:
Defining the pathogenic relationship of TDP-43 inclusions and cytoplasmic double stranded RNA in AD and FTD
定义 AD 和 FTD 中 TDP-43 内含物和细胞质双链 RNA 的致病关系
  • 批准号:
    10502780
  • 财政年份:
    2022
  • 资助金额:
    $ 105.47万
  • 项目类别:
Longitudinal At Home Smell Testing to Detect Infection by SARS-CoV-2
纵向家庭气味测试检测 SARS-CoV-2 感染
  • 批准号:
    10321005
  • 财政年份:
    2020
  • 资助金额:
    $ 105.47万
  • 项目类别:
Longitudinal At Home Smell Testing to Detect Infection by SARS-CoV-2
纵向家庭气味测试检测 SARS-CoV-2 感染
  • 批准号:
    10439178
  • 财政年份:
    2020
  • 资助金额:
    $ 105.47万
  • 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    9789798
  • 财政年份:
    2018
  • 资助金额:
    $ 105.47万
  • 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    10452499
  • 财政年份:
    2018
  • 资助金额:
    $ 105.47万
  • 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    9974450
  • 财政年份:
    2018
  • 资助金额:
    $ 105.47万
  • 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    10212939
  • 财政年份:
    2018
  • 资助金额:
    $ 105.47万
  • 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimer's Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    9565013
  • 财政年份:
    2017
  • 资助金额:
    $ 105.47万
  • 项目类别:

相似国自然基金

基于增广拉格朗日函数的加速分裂算法及其应用研究
  • 批准号:
    12371300
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
  • 批准号:
    82304065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
  • 批准号:
    32372384
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
  • 批准号:
    62302265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
  • 批准号:
    82360529
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
  • 批准号:
    10735662
  • 财政年份:
    2023
  • 资助金额:
    $ 105.47万
  • 项目类别:
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
  • 批准号:
    10726508
  • 财政年份:
    2023
  • 资助金额:
    $ 105.47万
  • 项目类别:
Anti-medin immunotherapy for vascular aging and related dementias
针对血管老化和相关痴呆的抗 Medin 免疫疗法
  • 批准号:
    10724869
  • 财政年份:
    2023
  • 资助金额:
    $ 105.47万
  • 项目类别:
A platform to identify in vivo targets of covalent cancer drugs in 3D tissues
识别 3D 组织中共价癌症药物体内靶标的平台
  • 批准号:
    10714543
  • 财政年份:
    2023
  • 资助金额:
    $ 105.47万
  • 项目类别:
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
  • 批准号:
    10819340
  • 财政年份:
    2023
  • 资助金额:
    $ 105.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了