Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease

利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物

基本信息

  • 批准号:
    10212939
  • 负责人:
  • 金额:
    $ 74.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-30 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Abstract The exploration of genomes, transcriptomes, and proteomes derived from brains with Alzheimer's disease (AD) by powerful computational tools has the potential of developing new knowledge, including the identification of pathways and targets that may be involved in the initiation and/or progression of the disease. The challenge is to find drugs that impact those pathways, and then validate the importance of those pathways – distinguishing primary disease drivers from secondary events. Repurposing FDA-approved drugs is one approach to probe potential pathways in proof of concept, and ultimately therapeutic, clinical trials. Here, we propose to discover and validate hypotheses for drug repurposing in AD through three integrated, complementary informatics approaches. Specifically, we will apply classical and network aware (prior-loaded) machine learning approaches to identify pathways and targets altered in AD brains at different stages of disease progression using data from Accelerating Medicines Partnership-AD available through Synapse (Aim 1); we will use systems pharmacology approaches to discover the target selectivity of lead compounds in human neuronal and glial cell types using unbiased RNA-seq, proteomic and imaging studies followed by pathway analysis (Aim 2). Each of these two Aims has two approaches: data-driven, hypothesis-generating analyses to discern disease-relevant drug signals; and hypothesis-testing in which positive findings from one approach are evaluated using the other approaches to assess rigor and reproducibility. Moreover, RNA-seq and proteomic data collected in cultured human CNS cell types following exposure to potential disease drivers and/or FDA-approved drugs in Aim 2 will be fed back into Aim 1 as CNS-cell type-derived priors to refine the predictive models. In Aim 3, we will develop new informatics strategies to conduct in-silico drug trials in EHR data with “prospective” outcomes to validate hypotheses based on the omics data sets and extant literature, using two big data sets: the UK 20 year CPRD longitudinal records of 20M National Health Service patients, and the RPDR Database (based at Partners Healthcare) with 6 M individuals followed for over 20 years. This integrated informatics program compensates for the limitations of each individual informatics approach to promote discovery and critical evaluation of “lead compounds” for known and novel AD pathways. To execute this strategy, we have assembled a multi-site, multi-disciplinary team with expertise ranging from clinical care to computer science and systems pharmacology. Some of the team members are AD experts and others bring an outsider's perspective. Finally, as a deliverable, we will create open-source data packages to release all the supporting evidence, software, and data with provenance in accordance with FAIR (findable, accessible, interoperable and reproducible) standards through Synapse and the AlzDataLens platform developed at MGH (Aim 4). These data packages will help to prioritize follow on clinical and translational studies including collaborations with industry or members of the community at large involved in new clinical trials.
抽象的 探索阿尔茨海默氏病大脑的基因组、转录组和蛋白质组 (AD)通过强大的计算工具具有开发新知识的潜力,包括 识别可能参与疾病发生和/或进展的途径和靶点。 挑战在于找到影响这些途径的药物,然后验证这些途径的重要性 – 区分原发疾病驱动因素和次要事件是重新利用 FDA 批准的药物的原因之一。 探索概念验证和最终治疗临床试验中潜在途径的方法。 提议通过三个综合的、 具体来说,我们将应用经典和网络感知(预先加载)的方法。 机器学习方法来识别 AD 大脑在不同阶段改变的途径和目标 使用 Synapse 提供的加速药物合作伙伴关系-AD 数据进行疾病进展(目标 1);我们将使用系统药理学方法来发现先导化合物的靶点选择性 使用无偏 RNA-seq、蛋白质组学和成像研究对人类神经元和神经胶质细胞类型进行研究,然后 路径分析(目标 2)。这两个目标都有两种方法:数据驱动、假设生成。 分析以辨别与疾病相关的药物信号;以及假设检验,其中一个阳性结果 此外,RNA-seq 正在使用其他方法来评估 ligor 和重现性。 暴露于潜在疾病驱动因素后在培养的人类中枢神经系统细胞类型中收集的蛋白质组数据 和/或目标 2 中 FDA 批准的药物将作为 CNS 细胞类型衍生的先验反馈到目标 1 中,以细化 在目标 3 中,我们将开发新的信息学策略以在 EHR 中进行计算机模拟药物试验。 具有“前瞻性”结果的数据,以验证基于组学数据集和现有文献的假设, 使用两个大数据集:英国 2000 万国民医疗服务患者的 20 年 CPRD 纵向记录, RPDR 数据库(位于 Partners Healthcare)有 600 万人关注此数据库 20 多年。 综合信息学方案弥补了每种信息学方法的局限性 促进已知和新颖 AD 途径的“先导化合物”的发现和严格评估。 根据这一战略,我们组建了一支多地点、多学科团队,其专业知识涵盖临床护理 一些团队成员是 AD 专家,其他人则来自计算机科学和系统药理学。 最后,作为一个可交付成果,我们将创建开源数据包来发布所有的数据。 根据 FAIR(可查找、可访问、 通过 MGH 开发的 Synapse 和 AlzDataLens 平台实现可互操作和可复制的标准 (目标 4)。这些数据包将有助于优先考虑临床和转化研究,包括 与参与新临床试验的行业或广大社区成员合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK W ALBERS其他文献

MARK W ALBERS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK W ALBERS', 18)}}的其他基金

Towards Universal Chemosensory Testing
迈向通用化学感应测试
  • 批准号:
    10683613
  • 财政年份:
    2023
  • 资助金额:
    $ 74.81万
  • 项目类别:
Towards Universal Chemosensory Testing
迈向通用化学感应测试
  • 批准号:
    10683613
  • 财政年份:
    2023
  • 资助金额:
    $ 74.81万
  • 项目类别:
Defining the pathogenic relationship of TDP-43 inclusions and cytoplasmic double stranded RNA in AD and FTD
定义 AD 和 FTD 中 TDP-43 内含物和细胞质双链 RNA 的致病关系
  • 批准号:
    10502780
  • 财政年份:
    2022
  • 资助金额:
    $ 74.81万
  • 项目类别:
Longitudinal At Home Smell Testing to Detect Infection by SARS-CoV-2
纵向家庭气味测试检测 SARS-CoV-2 感染
  • 批准号:
    10321005
  • 财政年份:
    2020
  • 资助金额:
    $ 74.81万
  • 项目类别:
Longitudinal At Home Smell Testing to Detect Infection by SARS-CoV-2
纵向家庭气味测试检测 SARS-CoV-2 感染
  • 批准号:
    10439178
  • 财政年份:
    2020
  • 资助金额:
    $ 74.81万
  • 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    9789798
  • 财政年份:
    2018
  • 资助金额:
    $ 74.81万
  • 项目类别:
Harnessing Diverse Bioinformatic Approaches To Repurpose Drugs For Alzheimers Disease And Related Dementias
利用多种生物信息学方法重新利用治疗阿尔茨海默病和相关痴呆症的药物
  • 批准号:
    10744875
  • 财政年份:
    2018
  • 资助金额:
    $ 74.81万
  • 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    10452499
  • 财政年份:
    2018
  • 资助金额:
    $ 74.81万
  • 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    9974450
  • 财政年份:
    2018
  • 资助金额:
    $ 74.81万
  • 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimer's Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    9565013
  • 财政年份:
    2017
  • 资助金额:
    $ 74.81万
  • 项目类别:

相似国自然基金

基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
  • 批准号:
    81903703
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
  • 批准号:
    81901296
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
  • 批准号:
    31900984
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 74.81万
  • 项目类别:
Individual Predoctoral Fellowship
个人博士前奖学金
  • 批准号:
    10752036
  • 财政年份:
    2024
  • 资助金额:
    $ 74.81万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 74.81万
  • 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 74.81万
  • 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 74.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了