Super-multiplex optical imaging: development of novel spectroscopy and probes to illuminate complex biomedicine
超级多重光学成像:开发新型光谱学和探针来阐明复杂的生物医学
基本信息
- 批准号:10622905
- 负责人:
- 金额:$ 88.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressArchitectureBiologicalBrain MappingBrain imagingCellsColorComplexConfocal MicroscopyDataDevelopmentElectronicsFluorescenceFluorescence MicroscopyImageImaging technologyLengthMicroscopyMonitorNatureOpticsOrganOrganellesPathologyPhenotypeProteinsRaman Spectrum AnalysisResolutionSamplingSpecimenSpectrum AnalysisSystemTechniquesTechnologyTimeTissuesaccurate diagnosisbiological systemscell typecomplex biological systemsdesigndisease diagnosisimage archival systemimaging probein vivoinnovationlight microscopymultiplexed imagingnew technologynoveloptical imagingprotein complexsingle moleculespatiotemporaltechnology platformtemporal measurementtwo-dimensionaltwo-photonultra high resolution
项目摘要
Biological systems are inherently heterogeneous in space, dynamic in time, and complex in
nature. A grand challenge is how to study the vast number of interacting players at every relevant
length scale, ranging from protein network in protein complexes, to interacting organelles within
cells, to various cell types within tissues, and to synergistic tissues within functional organs. Hence,
the ability to simultaneously monitor a large number of interacting species inside biological
systems with sufficient spatial-temporal resolution is indispensable for characterization and
understanding of the underlying complexity.
However, there is currently no suitable technology that can meet this grand challenge. The
prevalent “omics” technologies do not have the required spatial-temporal resolution, especially
for three-dimensional samples or living specimen. Optical microscopy can only image a few (2~5)
different targets at once, limited by the fundamental “color barrier” of fluorescence.
To break the color barrier of light microscopy and to bridge the gap between “omics” and
imaging, here we propose a radically new technology platform. Novel vibrational spectroscopy
including electronic-pre-resonance stimulated Raman scattering (epr-SRS) and stimulated
Raman excited fluorescence (SREF) will be exploited, to achieve the most sensitive Raman
imaging to date. Our preliminary data have proved single-molecule sensitivity. We will further
develop the technique by exploring the two-dimensional excitation spectroscopy to reach ~100
colors, designing and synthesizing a library of imaging probes, opening up super-resolution super-
multiplex imaging. The imaging technology will then be implemented in several broad-impact
applications including super-multiplex tissue pathology, mapping brain-wide architecture
complexity, and super-multiparameter deep phenotyping of living cells.
Innovations in optical microscopy have changed the way many biological problems are
addressed. Just like confocal microscopy is the work-horse in biomedical labs and two-photon
fluorescence microscopy has transformed in vivo brain imaging, we envision our newly proposed
super-multiplex spectroscopy and microscopy will break the current technical bottleneck,
revolutionize multicolor optical imaging, and become a new standard for system-wide study of
complex systems in general.
生物系统本质上在空间上是异质的,在时间上是动态的,在本质上是复杂的。
一个巨大的挑战是如何研究大量玩家在各个相关领域的互动。
长度尺度,范围从蛋白质复合物中相互作用的蛋白质网络到内部的细胞器
细胞、组织内的各种细胞类型以及功能器官内的协同组织。
同时监测生物体内大量相互作用物种的能力
具有足够时空分辨率的系统对于表征和分析是必不可少的。
了解潜在的复杂性。
然而,目前还没有合适的技术可以应对这一巨大挑战。
流行的“组学”技术不具备所需的时空分辨率,尤其是
对于三维样品或活体标本,光学显微镜只能对少数(2~5)个样品进行成像。
一次不同的目标,受到荧光基本“色垒”的限制。
打破光学显微镜的颜色障碍,弥合“组学”和“组学”之间的差距
成像,在这里我们提出了一个全新的振动光谱技术平台。
包括电子预共振受激拉曼散射 (epr-SRS) 和受激
将利用拉曼激发荧光(SREF)来实现最灵敏的拉曼
迄今为止,我们的初步数据已经证明了单分子敏感性。
通过探索二维激发光谱来开发该技术以达到~100
颜色,设计并合成成像探针库,开启超分辨率超-
该成像技术随后将在几个具有广泛影响的领域得到应用。
应用包括超级多重组织病理学、绘制全脑架构
复杂性和活细胞的超多参数深度表型分析。
光学显微镜的创新改变了许多生物问题的解决方式
就像共焦显微镜是生物医学实验室和双光子的主力一样。
荧光显微镜已经改变了体内脑成像,我们设想我们新提出的
超多重光谱和显微镜将打破当前的技术瓶颈,
彻底改变多色光学成像,并成为全系统研究的新标准
一般复杂系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Min其他文献
Wei Min的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Min', 18)}}的其他基金
High-resolution volumetric imaging of metabolic activity in tissues and its application to tumor metabolism
组织代谢活动的高分辨率体积成像及其在肿瘤代谢中的应用
- 批准号:
10117249 - 财政年份:2020
- 资助金额:
$ 88.19万 - 项目类别:
High-resolution volumetric imaging of metabolic activity in tissues and its application to tumor metabolism
组织代谢活动的高分辨率体积成像及其在肿瘤代谢中的应用
- 批准号:
10551256 - 财政年份:2020
- 资助金额:
$ 88.19万 - 项目类别:
High-resolution volumetric imaging of metabolic activity in tissues and its application to tumor metabolism
组织代谢活动的高分辨率体积成像及其在肿瘤代谢中的应用
- 批准号:
10376225 - 财政年份:2020
- 资助金额:
$ 88.19万 - 项目类别:
Ultrahigh-resolution and single-molecule stimulated Raman scattering (SRS) microscopy
超高分辨率单分子受激拉曼散射 (SRS) 显微镜
- 批准号:
10377375 - 财政年份:2019
- 资助金额:
$ 88.19万 - 项目类别:
Ultrahigh-resolution and single-molecule stimulated Raman scattering (SRS) microscopy
超高分辨率单分子受激拉曼散射 (SRS) 显微镜
- 批准号:
9899269 - 财政年份:2019
- 资助金额:
$ 88.19万 - 项目类别:
Super-multiplex vibrational imaging in living cells
活细胞中的超多重振动成像
- 批准号:
9921414 - 财政年份:2018
- 资助金额:
$ 88.19万 - 项目类别:
Super-multiplex vibrational imaging in living cells
活细胞中的超多重振动成像
- 批准号:
10163876 - 财政年份:2018
- 资助金额:
$ 88.19万 - 项目类别:
Stimulated emission reduced fluorescence (SERF) for breaking and extending the fundamental imaging-depth of two photon microscopy
受激发射减少荧光 (SERF) 用于打破和扩展双光子显微镜的基本成像深度
- 批准号:
9025791 - 财政年份:2015
- 资助金额:
$ 88.19万 - 项目类别:
Optical imaging of small bio-molecules in living cells and tissues by nonlinear Raman microscopy coupled with vibrational tags
通过非线性拉曼显微镜结合振动标签对活细胞和组织中的小生物分子进行光学成像
- 批准号:
9298651 - 财政年份:2015
- 资助金额:
$ 88.19万 - 项目类别:
Ultra-deep tissue imaging by super-nonlinear fluorescence microscopy
超非线性荧光显微镜超深层组织成像
- 批准号:
8769558 - 财政年份:2014
- 资助金额:
$ 88.19万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 88.19万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 88.19万 - 项目类别:
MetabolGut: a rapid assay platform to evaluate the impact drugs on lipid-handlingpathways and chylomicron-associated drug distribution using stem cell-drivenhuman absorptive enterocytes.
MetabolGut:一个快速检测平台,使用干细胞驱动的人体吸收性肠上皮细胞来评估药物对脂质处理途径和乳糜微粒相关药物分布的影响。
- 批准号:
10766493 - 财政年份:2023
- 资助金额:
$ 88.19万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 88.19万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 88.19万 - 项目类别: