Super-multiplex vibrational imaging in living cells
活细胞中的超多重振动成像
基本信息
- 批准号:10163876
- 负责人:
- 金额:$ 31.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlkynesAmplifiersApoptosisAzidesBiological ProcessBiotinCell NucleusCell membraneCellsCellular biologyChemicalsClinicalColorComplexCrystallizationCytokinesisDetectionDevelopmentDiseaseDyesEndoplasmic ReticulumEngineeringEventFluorescenceGenerationsGeneticGoalsGolgi ApparatusImageImaging TechniquesImmunologyLabelLasersLightLinkLipidsLysosomesMalignant NeoplasmsMethodsMicroscopeMicroscopyMitochondriaMolecularMolecular TargetNatureNervous system structureNeurobiologyOpticsOrganellesPhysiologic pulseProcessProteinsPublishingPumpRegulationResearch PersonnelRoleS-nitro-N-acetylpenicillamineSeriesShapesSpecificitySpeedStructural ProteinStructure-Activity RelationshipSystemSystems BiologyTechniquesTechnologyTestingTimeTumor Biologybiological systemsbiomaterial compatibilitycomplex biological systemsdesigndetection sensitivitydetectorhybrid proteinimaging capabilitiesimaging geneticsimaging modalityimaging platformimaging probeimprovedinstrumentationinterestmacromoleculemultiplexed imagingnanomolarnext generationnovelnovel therapeuticsoptical imagingsingle moleculetumor heterogeneityvibration
项目摘要
Summary
Biological systems are inherently complex and interrelated, as they organize and function
through a series of hierarchical networks involving multiple interacting components. Hence,
simultaneously visualizing a large number of distinct molecular species inside living cells has
become indispensable for understanding these biological processes in a holistic manner. As we
enter the era of systems biology, such super-multiplex imaging capability will be transformative
across various fields including revealing structure–function relationships in nervous systems;
understanding tumor heterogeneity; studying macromolecules choreography during cell
regulation, as well as revealing intricate interactions among various organelles of living cells.
The goal of this project is to develop a general super-multiplex optical microscopy platform
for simultaneously imaging a large number (more than 20) of specific molecular targets inside
live cells, an important but otherwise intractable goal by conventional methods such as
fluorescence. To do so, we propose to couple the emerging electronic pre-resonance stimulated
Raman scattering (epr-SRS) microscopy, offering nanomolar detection sensitivity and narrow
chemical specificity, with novel vibrational probes consisting of triple-bond-conjugated light-
absorbing dyes. The first-generation technique has been recently published, demonstrating a
record of 24-color imaging in biological systems (L. Wei … W. Min. Nature, 544, 465, 2017).
Moving towards the next-generation technology, we have laid out systematic plans as to
how to crystallize this concept into a much more powerful platform to achieve high-speed, high-
sensitivity, super-multiplex vibrational imaging of specific proteins and organelles in living cells.
We propose to construct new microscope instrumentations to significantly boost the imaging
speed by orders of magnitude (Specific Aim 1), and engineer novel epr-SRS vibrational probes
with expanded color palette, superior detection sensitivity, organelle targeting specificity and
genetic encodability to specific proteins (Specific Aim 2). Accompanied by these technical
developments, we will then apply it to probe systems-level interactions within multiple organelles
and proteins during dynamical processes of cytokinesis and apoptosis (Specific Aim 3).
If successfully implemented, we will establish a transformative imaging platform that could
allow researchers to interrogate an unprecedented large number of bio-molecules in living cells
with superb sensitivity, targeting specificity, labeling versatility, and biocompatibility. The
resulting super-multiplex optical microscopy would find wide applications in unraveling complex
biological systems such as cell biology, neurobiology, immunology, and tumor biology.
概括
生物系统的组织和功能本质上是复杂且相互关联的
通过一系列涉及多个交互组件的分层网络。
同时可视化活细胞内大量不同的分子种类
对于我们全面理解这些生物过程来说,变得不可或缺。
进入系统生物学时代,这种超多重成像能力将具有变革性
跨越各个领域,包括揭示神经系统的结构与功能关系;
了解肿瘤异质性;研究细胞过程中的大分子编排
调节,以及揭示活细胞各种细胞器之间复杂的相互作用。
该项目的目标是开发通用的超多重光学显微镜平台
用于同时对大量(超过 20 个)内部特定分子目标进行成像
活细胞,这是传统方法的一个重要但难以实现的目标,例如
为此,我们建议耦合新兴的电子预共振激发。
拉曼散射 (epr-SRS) 显微镜,提供纳摩尔级检测灵敏度和窄
化学特异性,具有由三键共轭光组成的新型振动探针
第一代技术最近已发表,展示了一种
生物系统中 24 色成像的记录(L. Wei … W. Min. Nature, 544, 465, 2017)。
面向下一代技术,我们制定了系统的计划
如何将这一概念具体化为一个更强大的平台,以实现高速、高
灵敏度,活细胞中特定蛋白质和细胞器的超多重振动成像。
我们建议建造新的显微镜仪器以显着提高成像效果
速度提高几个数量级(具体目标 1),并设计新型 epr-SRS 振动探头
扩展了调色板、卓越的检测灵敏度、细胞器靶向特异性和
对特定蛋白质的遗传编码性(具体目标 2)伴随着这些技术。
进展,然后我们将应用它来探测多个细胞器内的系统级相互作用
胞质分裂和细胞凋亡动态过程中的蛋白质(具体目标 3)。
如果成功实施,我们将建立一个变革性的成像平台
允许研究人员研究活细胞中前所未有的大量生物分子
具有卓越的灵敏度、靶向特异性、标记多功能性和生物相容性。
由此产生的超多重光学显微镜将在解开复杂的问题中找到广泛的应用
生物系统,例如细胞生物学、神经生物学、免疫学和肿瘤生物学。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Super-multiplex imaging of cellular dynamics and heterogeneity by integrated stimulated Raman and fluorescence microscopy.
通过集成受激拉曼和荧光显微镜对细胞动力学和异质性进行超多重成像。
- DOI:
- 发表时间:2021-08-20
- 期刊:
- 影响因子:5.8
- 作者:Shou, Jingwen;Oda, Robert;Hu, Fanghao;Karasawa, Keiko;Nuriya, Mutsuo;Yasui, Masato;Shiramizu, Bruce;Min, Wei;Ozeki, Yasuyuki
- 通讯作者:Ozeki, Yasuyuki
Metabolic Activity Phenotyping of Single Cells with Multiplexed Vibrational Probes.
使用多重振动探针对单细胞的代谢活性表型进行分析。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:7.4
- 作者:Zhao, Zhilun;Chen, Chen;Xiong, Hanqing;Ji, Jingwei;Min, Wei
- 通讯作者:Min, Wei
Multiplexed live-cell profiling with Raman probes.
使用拉曼探针进行多重活细胞分析。
- DOI:
- 发表时间:2021-06-07
- 期刊:
- 影响因子:16.6
- 作者:Chen, Chen;Zhao, Zhilun;Qian, Naixin;Wei, Shixuan;Hu, Fanghao;Min, Wei
- 通讯作者:Min, Wei
Towards Mapping Mouse Metabolic Tissue Atlas by Mid-Infrared Imaging with Heavy Water Labeling.
通过中红外成像和重水标记来绘制小鼠代谢组织图谱。
- DOI:
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Liu, Xinwen;Shi, Lixue;Shi, Lingyan;Wei, Mian;Zhao, Zhilun;Min, Wei
- 通讯作者:Min, Wei
Super-multiplexed vibrational probes: Being colorful makes a difference.
超级多重振动探头:色彩丰富,效果显着。
- DOI:10.1016/j.cbpa.2021.102115
- 发表时间:2022-04
- 期刊:
- 影响因子:7.8
- 作者:Qian N;Min W
- 通讯作者:Min W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Min其他文献
Wei Min的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Min', 18)}}的其他基金
Super-multiplex optical imaging: development of novel spectroscopy and probes to illuminate complex biomedicine
超级多重光学成像:开发新型光谱学和探针来阐明复杂的生物医学
- 批准号:
10622905 - 财政年份:2023
- 资助金额:
$ 31.23万 - 项目类别:
High-resolution volumetric imaging of metabolic activity in tissues and its application to tumor metabolism
组织代谢活动的高分辨率体积成像及其在肿瘤代谢中的应用
- 批准号:
10117249 - 财政年份:2020
- 资助金额:
$ 31.23万 - 项目类别:
High-resolution volumetric imaging of metabolic activity in tissues and its application to tumor metabolism
组织代谢活动的高分辨率体积成像及其在肿瘤代谢中的应用
- 批准号:
10551256 - 财政年份:2020
- 资助金额:
$ 31.23万 - 项目类别:
High-resolution volumetric imaging of metabolic activity in tissues and its application to tumor metabolism
组织代谢活动的高分辨率体积成像及其在肿瘤代谢中的应用
- 批准号:
10376225 - 财政年份:2020
- 资助金额:
$ 31.23万 - 项目类别:
Ultrahigh-resolution and single-molecule stimulated Raman scattering (SRS) microscopy
超高分辨率单分子受激拉曼散射 (SRS) 显微镜
- 批准号:
10377375 - 财政年份:2019
- 资助金额:
$ 31.23万 - 项目类别:
Ultrahigh-resolution and single-molecule stimulated Raman scattering (SRS) microscopy
超高分辨率单分子受激拉曼散射 (SRS) 显微镜
- 批准号:
9899269 - 财政年份:2019
- 资助金额:
$ 31.23万 - 项目类别:
Super-multiplex vibrational imaging in living cells
活细胞中的超多重振动成像
- 批准号:
9921414 - 财政年份:2018
- 资助金额:
$ 31.23万 - 项目类别:
Stimulated emission reduced fluorescence (SERF) for breaking and extending the fundamental imaging-depth of two photon microscopy
受激发射减少荧光 (SERF) 用于打破和扩展双光子显微镜的基本成像深度
- 批准号:
9025791 - 财政年份:2015
- 资助金额:
$ 31.23万 - 项目类别:
Optical imaging of small bio-molecules in living cells and tissues by nonlinear Raman microscopy coupled with vibrational tags
通过非线性拉曼显微镜结合振动标签对活细胞和组织中的小生物分子进行光学成像
- 批准号:
9298651 - 财政年份:2015
- 资助金额:
$ 31.23万 - 项目类别:
Ultra-deep tissue imaging by super-nonlinear fluorescence microscopy
超非线性荧光显微镜超深层组织成像
- 批准号:
8769558 - 财政年份:2014
- 资助金额:
$ 31.23万 - 项目类别:
相似国自然基金
氢甲酰化-有机催化接力策略介导的炔烃不对称多官能化及环化反应研究
- 批准号:22371217
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
低价钴-氢催化烯烃/炔烃氢烷基化
- 批准号:22371273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
炔烃叁键的选择性“断键/插碳”反应研究
- 批准号:22361010
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
炔烃参与的新型不对称去芳构化反应研究
- 批准号:22371254
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于炔烃环化反应新型硼氮杂Z型并苯类多环芳烃的设计、合成及性质研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Expedite Enzymatic Assembly of Glycans via DNA (de)Hybridization-Enabled Catch-and-Release
通过 DNA(去)杂交捕获和释放加速聚糖的酶促组装
- 批准号:
10648697 - 财政年份:2023
- 资助金额:
$ 31.23万 - 项目类别:
Structural Determinants of Permeation Barriers in Escherichia coli
大肠杆菌渗透屏障的结构决定因素
- 批准号:
10749251 - 财政年份:2023
- 资助金额:
$ 31.23万 - 项目类别:
Multifunctional Biodegradable Zwitterionic Polymer-Drug Conjugates for Multidrug Co-Delivery
用于多药联合递送的多功能可生物降解两性离子聚合物-药物缀合物
- 批准号:
10638101 - 财政年份:2023
- 资助金额:
$ 31.23万 - 项目类别:
Pharmacokinetics-Based DNA-Encoded Library Screening
基于药代动力学的 DNA 编码文库筛选
- 批准号:
10644211 - 财政年份:2023
- 资助金额:
$ 31.23万 - 项目类别:
Design and synthesis of a next generation glycobiology toolbox for cell surface labeling
用于细胞表面标记的下一代糖生物学工具箱的设计和合成
- 批准号:
10699270 - 财政年份:2023
- 资助金额:
$ 31.23万 - 项目类别: