High-resolution volumetric imaging of metabolic activity in tissues and its application to tumor metabolism
组织代谢活动的高分辨率体积成像及其在肿瘤代谢中的应用
基本信息
- 批准号:10551256
- 负责人:
- 金额:$ 37.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgingAnimalsBedsBiological ProcessCellsCharacteristicsChemicalsCluster AnalysisColonic NeoplasmsComputer AnalysisCoupledDataDetectionDeuterium OxideDevelopmentDiseaseDisease ProgressionExhibitsFluorescenceFluorescence MicroscopyFluorescent ProbesGenerationsGeneticGlioblastomaGoalsHealthHeterogeneityImageImaging TechniquesIn SituIndividualKnowledgeLabelLasersLifeMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMalignant NeoplasmsMapsMass Spectrum AnalysisMetabolicMetabolismMethodsMicroscopeMicroscopyMolecularMonitorMusNatureNeurodegenerative DisordersOpticsOrganPenetrationPhysiologyPositron-Emission TomographyProtocols documentationRecipeResolutionSamplingSpecificitySurfaceTailTechniquesTechnologyTestingThickTissuesTreatment ProtocolsTumor TissueVisualizationWarburg Effectanimal tissuecancer imagingcancer therapycell typeimaging modalityin vivoinstrumentationinterdisciplinary approachinventionmacromoleculemetabolic imagingmillimeternext generationnovelrational designscreeningtechnology developmenttreatment strategytumortumor heterogeneitytumor metabolismtumor xenografttwo-photon
项目摘要
Project Summary
Genetics and metabolism are two defining characteristics of life. Understanding metabolism in animals is
critical to unraveling the mechanistic basis of many biological processes in health and diseases, such as
development, aging and cancer. For normal physiology, it is the synthesis, transformation and degradation of
biomolecules (i.e., metabolic activity) that carry out the genetic blueprint of animals. For diseases, metabolic
reprogramming is a hallmark for cancer (such as the Warburg effect). However, popular imaging techniques
such as magnetic resonance spectroscopy, positron emission tomography, imaging mass spectroscopy and
fluorescence microscopy all exhibit inherent limitations towards noninvasive high-resolution metabolic imaging.
Therefore, there is no current metabolic imaging technique that can offer the desired combination of in
situ probing, single-cell resolution, and volumetric imaging of three-dimensional (3D) tissues. Such
technology would contribute to mechanistic understanding of normal physiology and disease progression such
as tumor. The goal of this project is to develop a novel optical technology for in situ high-resolution volumetric
imaging of metabolic activity in animal tissues, capturing metabolic status of every cell throughout 3D tissues.
We have laid out a multi-disciplinary approach including exploration of in vivo labeling probe, novel sample
treatment protocol, new microscope instrumentation construction, and multivariate computational analysis.
Aim 1 is about developing heavy water (D2O) as a universal probe to be coupled with the emerging stimulated
Raman scattering (SRS) microscopy, to monitor metabolic activities of tissues in a multiplex manner. Our
preliminary data have demonstrated the feasibility. Advanced computational analysis and hyperspectral SRS
instrumentation will be developed to achieve comprehensive metabolic profiling. Aim 2 aims to establish a
volumetric imaging method to generate 3D metabolic activity maps deep into tissues. We propose to develop
Raman-tailored clearing recipe that will open up volumetric SRS imaging of thick tissues and whole organs.
Our preliminary data have achieved more than 10 times SRS imaging depth extension than previously possible.
Aim 3 will integrate and tailor the technical development from Aim 1 and Aim 2 for imaging metabolic
heterogeneity of tumor tissue. We propose to construct correlative fluorescence and SRS microscope and
employ multivariate computational analysis. These development will be integrated to obtain cell-type-specific
metabolic activity profiling (including different types of newly-synthesized molecules) within 3D tumor tissues,
facilitating understanding of the causes, progression and refined treatment strategies of cancer.
1
项目概要
遗传学和新陈代谢是生命的两个决定性特征。了解动物的新陈代谢是
对于揭示健康和疾病中许多生物过程的机制基础至关重要,例如
发育、衰老和癌症。对于正常生理来说,它是合成、转化和降解的过程。
执行动物遗传蓝图的生物分子(即代谢活动)。对于疾病、代谢
重编程是癌症的一个标志(例如瓦尔堡效应)。然而,流行的成像技术
例如磁共振波谱、正电子发射断层扫描、成像质谱和
荧光显微镜对于无创高分辨率代谢成像都表现出固有的局限性。
因此,目前没有代谢成像技术可以提供所需的组合
原位探测、单细胞分辨率和三维 (3D) 组织的体积成像。这样的
技术将有助于对正常生理学和疾病进展的机械理解,例如
作为肿瘤。该项目的目标是开发一种用于原位高分辨率体积测量的新型光学技术
对动物组织中的代谢活动进行成像,捕获整个 3D 组织中每个细胞的代谢状态。
我们制定了多学科方法,包括探索体内标记探针、新样品
治疗方案、新型显微镜仪器构造和多变量计算分析。
目标 1 是开发重水 (D2O) 作为通用探针,与新兴的受激
拉曼散射 (SRS) 显微镜,以多重方式监测组织的代谢活动。我们的
初步数据证明了可行性。先进的计算分析和高光谱 SRS
将开发仪器以实现全面的代谢分析。目标 2 旨在建立一个
体积成像方法可生成组织深处的 3D 代谢活动图。我们建议开发
拉曼定制的透明配方将开启厚组织和整个器官的体积 SRS 成像。
我们的初步数据已经实现了比以前超过10倍的SRS成像深度扩展。
Aim 3 将整合和定制 Aim 1 和 Aim 2 的技术开发,用于成像代谢
肿瘤组织的异质性。我们建议建造相关荧光和SRS显微镜
采用多元计算分析。这些开发将被整合以获得细胞类型特异性
3D 肿瘤组织内的代谢活动分析(包括不同类型的新合成分子),
促进对癌症的病因、进展和精细治疗策略的了解。
1
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Raman Imaging Reveals Insights into Membrane Phase Biophysics in Cells.
拉曼成像揭示了细胞膜相生物物理学的见解。
- DOI:10.1021/acs.jpcb.3c03125
- 发表时间:2023-07-11
- 期刊:
- 影响因子:0
- 作者:Yihui Shen;Lu Wei;Wei Min
- 通讯作者:Wei Min
Single-particle imaging of nanomedicine entering the brain.
- DOI:10.1073/pnas.2309811121
- 发表时间:2024-01-22
- 期刊:
- 影响因子:11.1
- 作者:Mian Wei;Naixin Qian;Xin Gao;Xiaoqi Lang;Donghui Song;Wei Min
- 通讯作者:Wei Min
Raman scattering and vacuum fluctuation: An Einstein-coefficient-like equation for Raman cross sections.
拉曼散射和真空涨落:拉曼截面的类爱因斯坦系数方程。
- DOI:
- 发表时间:2023-11-21
- 期刊:
- 影响因子:0
- 作者:Min, Wei;Gao, Xin
- 通讯作者:Gao, Xin
VIBRANT: spectral profiling for single-cell drug responses.
VIBRANT:单细胞药物反应的光谱分析。
- DOI:
- 发表时间:2024-03
- 期刊:
- 影响因子:48
- 作者:Liu, Xinwen;Shi, Lixue;Zhao, Zhilun;Shu, Jian;Min, Wei
- 通讯作者:Min, Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Min其他文献
Wei Min的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Min', 18)}}的其他基金
Super-multiplex optical imaging: development of novel spectroscopy and probes to illuminate complex biomedicine
超级多重光学成像:开发新型光谱学和探针来阐明复杂的生物医学
- 批准号:
10622905 - 财政年份:2023
- 资助金额:
$ 37.06万 - 项目类别:
High-resolution volumetric imaging of metabolic activity in tissues and its application to tumor metabolism
组织代谢活动的高分辨率体积成像及其在肿瘤代谢中的应用
- 批准号:
10117249 - 财政年份:2020
- 资助金额:
$ 37.06万 - 项目类别:
High-resolution volumetric imaging of metabolic activity in tissues and its application to tumor metabolism
组织代谢活动的高分辨率体积成像及其在肿瘤代谢中的应用
- 批准号:
10376225 - 财政年份:2020
- 资助金额:
$ 37.06万 - 项目类别:
Ultrahigh-resolution and single-molecule stimulated Raman scattering (SRS) microscopy
超高分辨率单分子受激拉曼散射 (SRS) 显微镜
- 批准号:
10377375 - 财政年份:2019
- 资助金额:
$ 37.06万 - 项目类别:
Ultrahigh-resolution and single-molecule stimulated Raman scattering (SRS) microscopy
超高分辨率单分子受激拉曼散射 (SRS) 显微镜
- 批准号:
9899269 - 财政年份:2019
- 资助金额:
$ 37.06万 - 项目类别:
Super-multiplex vibrational imaging in living cells
活细胞中的超多重振动成像
- 批准号:
9921414 - 财政年份:2018
- 资助金额:
$ 37.06万 - 项目类别:
Super-multiplex vibrational imaging in living cells
活细胞中的超多重振动成像
- 批准号:
10163876 - 财政年份:2018
- 资助金额:
$ 37.06万 - 项目类别:
Stimulated emission reduced fluorescence (SERF) for breaking and extending the fundamental imaging-depth of two photon microscopy
受激发射减少荧光 (SERF) 用于打破和扩展双光子显微镜的基本成像深度
- 批准号:
9025791 - 财政年份:2015
- 资助金额:
$ 37.06万 - 项目类别:
Optical imaging of small bio-molecules in living cells and tissues by nonlinear Raman microscopy coupled with vibrational tags
通过非线性拉曼显微镜结合振动标签对活细胞和组织中的小生物分子进行光学成像
- 批准号:
9298651 - 财政年份:2015
- 资助金额:
$ 37.06万 - 项目类别:
Ultra-deep tissue imaging by super-nonlinear fluorescence microscopy
超非线性荧光显微镜超深层组织成像
- 批准号:
8769558 - 财政年份:2014
- 资助金额:
$ 37.06万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 37.06万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 37.06万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 37.06万 - 项目类别:
Deep learning for prediction of Mild Cognitive Impairment and Dementia of the Alzheimer's type
深度学习预测轻度认知障碍和阿尔茨海默氏症型痴呆
- 批准号:
10662094 - 财政年份:2023
- 资助金额:
$ 37.06万 - 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 37.06万 - 项目类别: