Structural Determinants of Permeation Barriers in Escherichia coli
大肠杆菌渗透屏障的结构决定因素
基本信息
- 批准号:10749251
- 负责人:
- 金额:$ 62.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-31 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcademiaAgreementAlkynesAntibiotic TherapyAntibioticsAzidesBacteriaBinding SitesBiochemicalBiological AssayBiologyCellsChemicalsCollectionCommunitiesCytoplasmDataData SetDrug TargetingEpitopesEscherichia coliFluorescenceFoundationsGenomicsGram-Negative BacteriaHealthcareIndustryKnock-inKnock-outLabelLaboratoriesLibrariesMeasurableMeasuresMedicalMembraneMetabolicMethodologyMethodsModernizationMolecularOperative Surgical ProceduresOrganellesOrganic SynthesisPenetrationPermeabilityPharmaceutical ChemistryPharmaceutical PreparationsPhasePhysical condensationPredispositionProteomicsReactionReagentResearchResolutionScienceSpecificityTestingThree-Dimensional ImagingVDAC1 geneWorkcell envelopecheminformaticscycloadditiondesigndrug discoveryefflux pumpfluorophorehigh throughput analysishuman diseaseinfection riskinnovationinstrumentationmachine learning algorithmmetabolomicsminimal risknovelpathogenperiplasmscreeningsmall moleculesmall molecule librariesstructural determinantssubcellular targetingtoolultra high resolution
项目摘要
PROJECT SUMMARY
Antibiotics represent the most successful class of drugs developed by modern science. They have spurred
numerous medical advances by facilitating invasive surgeries with minimal risk of infection. Today, a major
healthcare crisis looms as we are fast approaching a post-antibiotic era. Historically, it has proven to be much
more difficult to find agents that are active against Gram-negative pathogens compared to Gram-positive
pathogens. The primary reason is that Gram-negative bacteria have a unique asymmetric outer membrane (OM)
in addition to an inner membrane. The targets for most antibiotics reside beyond the OM, and thus these
molecules need to penetrate the OM to be active. Yet, the OM is uniquely effective in blocking the translocation
of small molecules, thus creating a major challenge for the field.
The Golden Era of antibiotics leveraged naturally abundant small molecules that were readily identified using
traditional methods; however, this methodology has proven to be much more difficult to be further mined for new
antibiotics during the past several decades. The next phase of antibiotic drug discovery has the potential to be
supported by our increasing collection of proteomics, genomics, and metabolomics data that will reveal promising
drug targets. Academia and industry could potentially exploit these data sets to design small molecule agents
that are potent and of high specificity. To accomplish this, the field fundamentally requires guiding principles
describing the molecular determinants of permeation into bacterial cells akin to the Lipinski’s rules of 5 (Ro5).
We propose to develop a novel fluorescence assay that measures the accumulation of small molecules in Gram-
negative pathogens based on a combination of HaloTag expression and anchoring of a biorthogonal epitope
within HaloTag. Our team will systematically (testing established antibiotics with known permeation profiles) and
broadly (screening a unique library of small molecules modified with an azide tag) apply this approach to
measurably grow our fundamental understanding of the molecular determinants of permeation. Additionally, we
will utilize the same platform to provide unprecedented spatial resolution of the distribution of small molecules
(including known antibiotics) in subcellular compartments.
项目概要
抗生素代表了现代科学开发的最成功的一类药物。
今天,通过促进侵入性手术和最小化感染风险而取得了许多医学进步。
随着我们快速接近后抗生素时代,医疗保健危机迫在眉睫。历史证明,这一危机的影响非常大。
与革兰氏阳性病原体相比,更难找到对革兰氏阴性病原体有活性的药物
主要原因是革兰氏阴性菌具有独特的不对称外膜(OM)。
除了内膜之外,大多数抗生素的靶点都位于 OM 之外,因此这些
然而,分子需要穿透 OM 才能发挥作用,而 OM 在阻止易位方面具有独特的功效。
小分子,从而给该领域带来了重大挑战。
抗生素的黄金时代利用了天然丰富的小分子,这些小分子很容易通过使用来识别
传统方法;然而,事实证明,这种方法更难以进一步挖掘新的方法。
抗生素药物发现的下一阶段有可能是过去几十年的抗生素。
在我们不断收集的蛋白质组学、基因组学和代谢组学数据的支持下,这些数据将揭示有希望的
学术界和工业界可能会利用这些数据集来设计小分子药物。
为了实现这一目标,该领域从根本上需要指导原则。
描述了类似于 Lipinski 5 规则 (Ro5) 的渗透到细菌细胞的分子决定因素。
我们建议开发一种新颖的荧光测定法来测量革兰氏阴性菌中小分子的积累
基于 HaloTag 表达和双正交表位锚定相结合的阴性病原体
在 HaloTag 内,我们的团队将系统地(测试具有已知渗透特性的已建立的抗生素)并
广泛地(筛选用叠氮化物标签修饰的独特小分子库)将该方法应用于
显着增强我们对渗透分子决定因素的基本理解。
将利用同一平台提供前所未有的小分子分布空间分辨率
(包括已知的抗生素)在亚细胞区室中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcos M. Pires其他文献
Targeted acidosis mediated delivery of antigenic MHC-binding peptides
靶向酸中毒介导的抗原 MHC 结合肽的递送
- DOI:
10.3389/fimmu.2024.1337973 - 发表时间:
2024-04-11 - 期刊:
- 影响因子:7.3
- 作者:
J. J. Kelly;Emily Ankrom;Sarah E. Newkirk;Damien Thévenin;Marcos M. Pires - 通讯作者:
Marcos M. Pires
Marcos M. Pires的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcos M. Pires', 18)}}的其他基金
Bacterial and Molecular Determinants of Mycobacterial Impermeability
分枝杆菌不渗透性的细菌和分子决定因素
- 批准号:
10749613 - 财政年份:2023
- 资助金额:
$ 62.32万 - 项目类别:
Chemical Remodeling of Cell Surface to Enhance the Accumulation of Therapeutic Bacteria to Tumors
细胞表面的化学重塑以增强治疗性细菌对肿瘤的积累
- 批准号:
10535464 - 财政年份:2022
- 资助金额:
$ 62.32万 - 项目类别:
Chemical Remodeling of Cell Surface to Enhance the Accumulation of Therapeutic Bacteria to Tumors
细胞表面的化学重塑以增强治疗性细菌对肿瘤的积累
- 批准号:
10391986 - 财政年份:2022
- 资助金额:
$ 62.32万 - 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
- 批准号:
10381814 - 财政年份:2017
- 资助金额:
$ 62.32万 - 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
- 批准号:
10112721 - 财政年份:2017
- 资助金额:
$ 62.32万 - 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
- 批准号:
10552391 - 财政年份:2017
- 资助金额:
$ 62.32万 - 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
- 批准号:
9382168 - 财政年份:2017
- 资助金额:
$ 62.32万 - 项目类别:
Unraveling Bacterial Cell Wall Biosynthesis and Sensing via Synthetic Analogs
通过合成类似物解开细菌细胞壁的生物合成和传感
- 批准号:
10242123 - 财政年份:2017
- 资助金额:
$ 62.32万 - 项目类别:
Development of a Novel Artificial Diiron Protein with N-hydroxylase Activity
具有 N-羟化酶活性的新型人工二铁蛋白的开发
- 批准号:
8004780 - 财政年份:2010
- 资助金额:
$ 62.32万 - 项目类别:
相似海外基金
Clinical Coordinating Center for the Network of Excellence in Neuroscience Clinical Trials (NEXT - CCC)
神经科学临床试验卓越网络临床协调中心 (NEXT - CCC)
- 批准号:
10741962 - 财政年份:2023
- 资助金额:
$ 62.32万 - 项目类别:
Development of a novel, regenerative therapy to reverse synapse loss in Alzheimer's Disease
开发一种新颖的再生疗法来逆转阿尔茨海默氏病的突触损失
- 批准号:
10707700 - 财政年份:2023
- 资助金额:
$ 62.32万 - 项目类别:
Interdisciplinary Nutrition Sciences Symposium: Obesity and the Brain Across the Life Course
跨学科营养科学研讨会:整个生命过程中的肥胖与大脑
- 批准号:
10753871 - 财政年份:2023
- 资助金额:
$ 62.32万 - 项目类别:
2023 Chromosome Dynamics Gordon Research Conference and Seminar
2023年染色体动力学戈登研究会议暨研讨会
- 批准号:
10750086 - 财政年份:2023
- 资助金额:
$ 62.32万 - 项目类别:
Dynamical Diffraction Analysis for 3D Electron Crystallography
3D 电子晶体学的动态衍射分析
- 批准号:
10546970 - 财政年份:2022
- 资助金额:
$ 62.32万 - 项目类别: