Surrogate Augmented Deep Predictive Learning for Retinopathy of Prematurity
早产儿视网膜病变的替代增强深度预测学习
基本信息
- 批准号:10740289
- 负责人:
- 金额:$ 48.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2025-09-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAge FactorsAlgorithmsBirth WeightBlindnessCaringChildhoodClinicalDataData SetData SourcesDemographic FactorsDetectionDevelopmentDiagnosticDiseaseEarly DiagnosisEarly identificationEvaluationEventEyeFundingFutureGestational AgeGoalsHealthcareImageImage AnalysisInfantInfant CareLearningLongitudinal, observational studyMachine LearningMedicalMethodsNorth AmericaOphthalmologistOphthalmologyPerformancePremature InfantPreventionProspective StudiesQuality of CareReaderReproducibilityResearchResourcesRetinaRetinopathy of PrematurityRiskRisk FactorsScheduleStatistical MethodsSurvival RateTechniquesTimeTrainingUnited StatesValidationclinical practicedeep learningexperiencefollow-uphigh risk infantimprovedinnovationlearning algorithmmachine learning algorithmnovelophthalmic examinationportabilityprediction algorithmpreventretinal imagingrisk stratificationserial imagingskillstool
项目摘要
Surrogate Augmented Deep Predictive Learning
for Retinopathy of Prematurity
ABSTRACT
This proposal aims to develop novel surrogate augmented deep predictive learning algorithms for predicting
retinopathy of prematurity (ROP). The proposal directly addresses a critical clinical burden in ophthalmology that
limited ROP experts are available in the United States and worldwide, yet the early detection of ROP for timely
treatment has tremendous clinical benefit for infants in preventing childhood blindness. Using a unique and
massive dataset with 7905 image sets collected from a longitudinal observational study of 1257 premature
infants from 13 centers in North America, we plan to develop, validate, and evaluate novel analytic algorithms
that hold a promise of directly improving clinical practice in the ROP care of premature infants.
The overarching goals of this proposal are: (1) to develop novel methods for performing risk stratification through
the surrogate augmented deep predictive learning of earliest retinal images (prior to 34 weeks postmenstrual
age [PMA]) and the most important ROP risk factors (birth weight, gestational age) for early prediction of
referral-warranted ROP (RW-ROP), defined as plus disease, ROP in zone I, or stage 3 ROP or greater; and (2)
to optimize the ROP schedule through the surrogate augmented deep predictive learning of accumulated
longitudinal retinal images for the dynamic prediction of RW-ROP. Our methods, after proper validation in
future prospective studies, may serve as a useful tool for ROP risk stratification and optimization of scheduling
of ROP examinations, which can reduce the burden of ROP examination for both infants and ophthalmologists
while improving the eye care of premature infants for the prevention of childhood blindness.
The Specific Aims to achieve these goals are:
Aim #1: Develop and evaluate the surrogate augmented deep predictive learning of the earliest retinal
image sets taken prior to 34 weeks PMA and demographic factors to predict RW-ROP. Accurate risk
stratification through earlier prediction of RW-ROP will help identify high-risk infants for close follow-up by
ophthalmologists for early detection and timely treatment of ROP, and low risk infants who are currently receiving
unnecessary physically stressful retinal examinations for less frequent ROP examinations.
Aim #2: Implement the surrogate augmented deep predictive learning of accumulated retinal images
over time to dynamically predict RW-ROP. The dynamic prediction of the future course of ROP by deep
learning of longitudinally accumulated retinal images will help optimize the schedule of ROP examinations by
ophthalmologists, thus reduce the burden of ROP examinations for both infants and ophthalmologists.
The successful completion of this project will lead to novel analytic algorithms of retinal images for early
identification of high-risk infants for close follow-up and for optimization of ROP exam schedule, which will lead
to earlier detection and timely treatment of ROP while minimizing the number of ROP exams. This research is
highly feasible and potentially transformative in its global impact on the ROP care of premature infants.
替代增强深度预测学习
用于早产儿视网膜病变
抽象的
该提案旨在开发新颖的替代增强深度预测学习算法来预测
早产儿视网膜病变(ROP)。该提案直接解决了眼科的关键临床负担
美国和世界各地的 ROP 专家有限,但如何及早发现 ROP 并及时进行治疗
治疗对婴儿预防儿童失明具有巨大的临床益处。使用独特且
包含 7905 个图像集的海量数据集,这些图像集是从对 1257 个早产儿的纵向观察研究中收集的
来自北美 13 个中心的婴儿,我们计划开发、验证和评估新颖的分析算法
有望直接改善早产儿 ROP 护理的临床实践。
该提案的总体目标是:(1)通过以下方式开发执行风险分层的新方法:
最早视网膜图像(月经后 34 周之前)的替代增强深度预测学习
年龄 [PMA])和最重要的 ROP 危险因素(出生体重、孕龄),用于早期预测
转诊保证 ROP (RW-ROP),定义为附加疾病、ROP 处于 I 区或 3 期 ROP 或更高阶段;和(2)
通过累积的代理增强深度预测学习来优化 ROP 调度
用于 RW-ROP 动态预测的纵向视网膜图像。我们的方法经过适当验证后
未来的前瞻性研究,可能作为 ROP 风险分层和调度优化的有用工具
ROP检查,可以减轻婴儿和眼科医生的ROP检查负担
同时改善早产儿的眼部护理,预防儿童失明。
实现这些目标的具体目标是:
目标#1:开发和评估最早视网膜的替代增强深度预测学习
在 34 周 PMA 之前拍摄的图像集和人口因素用于预测 RW-ROP。精准风险
通过早期预测 RW-ROP 进行分层将有助于识别高危婴儿,以便进行密切随访
眼科医生及早发现并及时治疗ROP,以及目前正在接受治疗的低危婴儿
减少不必要的身体压力的视网膜检查,以减少 ROP 检查的频率。
目标#2:对累积的视网膜图像实施替代增强深度预测学习
随着时间的推移动态预测 RW-ROP。深度预测ROP未来进程的动态
纵向累积的视网膜图像的学习将有助于优化 ROP 检查的时间表
眼科医生,从而减轻婴儿和眼科医生的 ROP 检查负担。
该项目的成功完成将为早期视网膜图像分析算法带来新的成果。
识别高危婴儿进行密切随访并优化 ROP 检查时间表,这将导致
及早发现并及时治疗 ROP,同时最大限度地减少 ROP 检查次数。这项研究是
其对早产儿 ROP 护理的全球影响具有高度可行性和潜在变革性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Chen其他文献
Yong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Chen', 18)}}的其他基金
Development of Magnetic Resonance Fingerprinting (MRF) to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer
开发磁共振指纹图谱 (MRF) 来评估乳腺癌新辅助化疗的反应
- 批准号:
10713097 - 财政年份:2023
- 资助金额:
$ 48.21万 - 项目类别:
ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
- 批准号:
10754029 - 财政年份:2023
- 资助金额:
$ 48.21万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10707150 - 财政年份:2022
- 资助金额:
$ 48.21万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10522570 - 财政年份:2022
- 资助金额:
$ 48.21万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10522570 - 财政年份:2022
- 资助金额:
$ 48.21万 - 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
- 批准号:
10490346 - 财政年份:2021
- 资助金额:
$ 48.21万 - 项目类别:
CICADA: clinical informatics and computational approaches for drug-repositioning of AD/ADRD
CICADA:AD/ADRD 药物重新定位的临床信息学和计算方法
- 批准号:
10476677 - 财政年份:2021
- 资助金额:
$ 48.21万 - 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
- 批准号:
10642888 - 财政年份:2021
- 资助金额:
$ 48.21万 - 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
- 批准号:
10471166 - 财政年份:2021
- 资助金额:
$ 48.21万 - 项目类别:
PheBC: bias correction methods for EHR derived phenotype
PheBC:EHR 衍生表型的偏差校正方法
- 批准号:
10624825 - 财政年份:2021
- 资助金额:
$ 48.21万 - 项目类别:
相似国自然基金
季节性因素影响下Wolbachia对具有年龄结构的蚊媒及蚊媒病的控制
- 批准号:11901247
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于年龄因素的白眉姬鹟繁殖对策调整与繁殖功效研究
- 批准号:31801976
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
儿童区分真实和虚幻的神经机制:年龄特征和影响因素
- 批准号:31700968
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
老龄化对牙周膜干细胞增殖及分化能力的影响及其机制研究
- 批准号:81500853
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
大鼠骨骼肌快肌纤维和慢肌纤维NMJ功能与年龄相关的变化及其影响因素分析
- 批准号:31460275
- 批准年份:2014
- 资助金额:48.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 48.21万 - 项目类别:
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 48.21万 - 项目类别:
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
- 批准号:
10538513 - 财政年份:2023
- 资助金额:
$ 48.21万 - 项目类别: