Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons

触须响应三叉神经节神经元的编码特性

基本信息

  • 批准号:
    9091661
  • 负责人:
  • 金额:
    $ 32.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): We see because retinal ganglion cells respond to light. We hear because spiral ganglion cells respond to sound. We feel because primary somatosensory neurons respond to "touch." But what is "touch?" Whereas light and sound can be characterized by physical parameters (amplitude, frequency, phase, and polarization), the mechanics of touch, and the manner in which primary sensory neurons encode the parameters of touch, are largely unquantified. This is a glaring gap within the entire field of somatosensation, and it occurs because mechanics are difficult to quantify. To close this gap we will use the rat vibrissal (whisker) system as a model to directly relate the responses of primary sensory neurons to the quantified mechanics of touch. Paralleling the increased use of rodents in genetic and optogenetic research, the rodent vibrissal array has become an increasingly important model for the study of touch and sensorimotor integration. In the past few years, our laboratory has made rapid progress in characterizing vibrissal mechanics, and we are now uniquely positioned to determine how 3D whisker deflections and vibrations are represented in the firing patterns of primary sensory neurons of the trigeminal ganglion (Vg) during natural whisking behavior. The central goal of our investigation is to predict the responses of Vg neurons during both contact and non-contact whisking by appropriately combining 3D dynamic and quasistatic models of mechanical signals. Our three aims move from the outside of the rat inwards, from whisker, to follicle, to Vg neurons. In Aim 1, we will develop models of mechanical coding by the whisker, quantifying the 3D mechanical signals at the vibrissal base during both contact and non-contact whisking. In Aim 2, these models will be used to predict responses of mechanoreceptors within the follicle and thus to identify classes of Vg neurons based on the mechanical transformation they perform. Finally, in Aim 3 we will quantify the responses of Vg neurons during natural whisking behavior in awake animals. Exploiting the cell classes identified in Aim 2, and consistent with the modeling of Aim1, we will test the hypothesis that Vg responses are more linearly correlated with mechanical signals during whisking than they are with the geometry and kinematics of whisking behavior. The proposed work will be the first to record from Vg neurons in awake behaving animals while fully characterizing the mechanical input during both contact and non-contact whisking. We aim to solve a large portion of the "coding problem" for the vibrissal-trigeminal system. Solving this problem will provide a better understanding of what a Vg spike "means" for more central stages of the trigeminal system, including sensory thalamus and barrel cortex.
 描述(由申请人提供):我们看到是因为视网膜神经节细胞对光做出反应。我们听到是因为螺旋神经节细胞对声音做出反应。我们感觉是因为初级体感神经元对“触摸”做出反应。可以通过物理参数(幅度、频率、相位和偏振)来表征,触摸的机制以及初级感觉神经元编码触摸参数的方式在很大程度上是未量化的。整个躯体感觉领域存在明显的差距,而这种差距的发生是因为力学难以量化,为了弥补这一差距,我们将使用大鼠触须(晶须)系统作为模型,将初级感觉神经元的反应与量化的力学直接联系起来。随着啮齿类动物在遗传和光遗传学研究中的使用不断增加,啮齿类动物振动阵列在过去几年中已成为研究触摸和感觉运动整合的越来越重要的模型。在表征振动力学方面取得了快速进展,我们现在处于独特的地位,可以确定在自然拂动行为期间如何在三叉神经节(Vg)的初级感觉神经元的放电模式中表示 3D 胡须偏转和振动,这是我们的中心目标。研究的目的是通过适当结合机械信号的 3D 动态和准静态模型来预测 Vg 神经元在接触和非接触搅拌过程中的反应,我们的三个目标是从大鼠的外部向内移动。从晶须到毛囊,再到 Vg 神经元 在目标 1 中,我们将开发晶须的机械编码模型,量化接触和非接触晶须期间触须基部的 3D 机械信号。用于预测毛囊内机械感受器的反应,从而根据 Vg 神经元执行的机械转换来识别它们的类别。最后,在目标 3 中,我们将量化 Vg 神经元的反应。利用 Aim 2 中确定的细胞类别,并与 Aim1 的建模一致,我们将测试以下假设:Vg 响应与搅拌过程中的机械信号的线性相关性高于与几何形状和运动学的相关性。所提出的工作将是第一个从清醒行为动物的 Vg 神经元中记录,同时充分表征接触和非接触式搅拌过程中的机械输入。我们的目标是解决大部分“编码”问题。解决这个问题将有助于更好地理解 Vg 尖峰对于三叉神经系统的更中央阶段(包括感觉丘脑和桶状皮层)的“意义”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mitra J Hartmann其他文献

Mitra J Hartmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mitra J Hartmann', 18)}}的其他基金

Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
  • 批准号:
    10435437
  • 财政年份:
    2020
  • 资助金额:
    $ 32.11万
  • 项目类别:
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
  • 批准号:
    10650312
  • 财政年份:
    2020
  • 资助金额:
    $ 32.11万
  • 项目类别:
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
  • 批准号:
    10115151
  • 财政年份:
    2020
  • 资助金额:
    $ 32.11万
  • 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
  • 批准号:
    9312907
  • 财政年份:
    2015
  • 资助金额:
    $ 32.11万
  • 项目类别:
Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons
触须响应三叉神经节神经元的编码特性
  • 批准号:
    9761589
  • 财政年份:
    2015
  • 资助金额:
    $ 32.11万
  • 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
  • 批准号:
    10424659
  • 财政年份:
    2015
  • 资助金额:
    $ 32.11万
  • 项目类别:
Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons
触须响应三叉神经节神经元的编码特性
  • 批准号:
    9317557
  • 财政年份:
    2015
  • 资助金额:
    $ 32.11万
  • 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
  • 批准号:
    9029585
  • 财政年份:
    2015
  • 资助金额:
    $ 32.11万
  • 项目类别:

相似国自然基金

臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
  • 批准号:
    81901068
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
  • 批准号:
    41971276
  • 批准年份:
    2019
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
  • 批准号:
    31801059
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
  • 批准号:
    31771593
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
家鸽对城市区域大气重金属污染物的暴露响应研究
  • 批准号:
    41701574
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
  • 批准号:
    10717610
  • 财政年份:
    2023
  • 资助金额:
    $ 32.11万
  • 项目类别:
Targeted Temperature Modulation with Smart Radiometric Monitoring for Effective and Long-Lasting Opioid-Free Pelvic Pain Relief - A Novel Low-Cost, Portable, Tampon-sized Thermal Transfer Device.
通过智能辐射监测进行有针对性的温度调节,可有效且持久地缓解无阿片类药物的盆腔疼痛 - 一种新型低成本、便携式、卫生棉条大小的热转印设备。
  • 批准号:
    10760002
  • 财政年份:
    2023
  • 资助金额:
    $ 32.11万
  • 项目类别:
Mechanism of ultrasound neuromodulation effects on glucose homeostasis and diabetes
超声神经调节对葡萄糖稳态和糖尿病的影响机制
  • 批准号:
    10586211
  • 财政年份:
    2023
  • 资助金额:
    $ 32.11万
  • 项目类别:
Social Information Processing in the Vomeronasal System during Active Behavior
主动行为期间犁鼻系统的社会信息处理
  • 批准号:
    10751849
  • 财政年份:
    2023
  • 资助金额:
    $ 32.11万
  • 项目类别:
Axon guidance through the bifunctional cue WFIKKN2 and its receptors
通过双功能信号 WFIKKN2 及其受体进行轴突引导
  • 批准号:
    10625432
  • 财政年份:
    2022
  • 资助金额:
    $ 32.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了