Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
基本信息
- 批准号:10435437
- 负责人:
- 金额:$ 36.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAfferent NeuronsAnatomic ModelsAnatomyAnimal BehaviorAreaAttentionBackBehaviorBehavioralBilateralBiomechanicsBrainBrain StemBreathingChildhoodComplexDataDeglutitionDeglutition DisordersElderlyElementsExploratory BehaviorExposure toFaceFacial MusclesFeedbackFreedomFrequenciesGoalsHandHeadHistologyInfantInvestigationLaboratoriesLightLimb structureMRI ScansMagnetic Resonance ImagingMasticationMechanicsModelingMorphologyMotionMotorMovementMusMuscleNervous system structureNeural PathwaysNeuromechanicsNeurosciencesPaperPatternPeriodicityPersonsPlantsRattusResearch PersonnelRodentRodent ModelRoleSensorySensory ProcessSideSignal TransductionSmell PerceptionSpeedSystemTactileTestingTimeTouch sensationTrigeminal SystemVibrissaeVolitionWorkX-Ray Computed Tomographyactive controlbasebehavioral studybiomechanical modelcentral pattern generatorexperimental studykinematicsmicroCTmotor controlneuroregulationnovelpreventrelating to nervous systemsensorsimulationsoftware systemssucklingthree-dimensional modeling
项目摘要
Project Summary:
The rodent vibrissal (whisker) system is one of the most widely-used models in neuroscience to study how
information about movement and touch are combined. During many exploratory behaviors, rats and mice
sweep their whiskers back and forth in a rapid, rhythmic motion called “whisking” to actively gather touch
information. Although whisking is rhythmic, rodents can also change how their whiskers move depending on
the desired sensory information, and on their particular behavior. Researchers are nearly able to begin to
“close-the-loop” between movement and touch for the whisker system, except for one critical gap: we do not
yet have a three dimensional (3D) model of rodent facial musculature. Without such a model, we cannot
identify how the rat changes its muscle activity to change whisker motion and acquire particular types of
sensory information. We cannot know which whisker motions are fixed via the biomechanics, versus which
motions the rat can actively control. We cannot fully understand the motor commands sent to the whisker
muscles. The central goal of this proposal is to develop three-dimensional (3D) models of rodent facial
musculature that close this gap. We will first use a novel combination of tactile profilometry, histology, MRI, and
CT-scans to quantify the anatomy of rodent facial muscles and the follicles that hold the whiskers. Using this
anatomy, we will then construct 3D biomechanical models of the whisker muscles and follicles to simulate the
motion of all whiskers. These models will be validated and tested in several different complementary software
systems, and then be used to test eleven specific predictions for the particular function of each whisker-related
muscle. Finally, we will integrate the 3D models of rodent facial muscles with existing models that describe the
sensory, tactile side of whisker motion. These combined muscle-sensory simulations will be directly compared
with active animal behavior. This work takes a step towards closing the loop between motor action and the
sensory data acquired, and helps disentangle the relative roles of biomechanics and neural control during
different types of whisking. The proposed work will inform all levels of study of whisker neural pathways, from
primary sensory neurons to sensory and motor cortical areas, to brainstem regions involved in controlling
whisker motions. More generally, whisking represents a unique window into how volitional control can
modulate or override centrally-patterned movement. The transition between varieties of rhythmic and non-
rhythmic movement has important implications for the coordination of sniffing, breathing, olfaction, chewing,
swallowing, and suckling, and the proposed work could thus shed light on the neuromechanical basis for some
pediatric and geriatric dysphagias.
项目摘要:
啮齿动物(Whisker)系统是神经科学中最广泛使用的模型之一,用于研究如何
有关运动和触摸的信息已结合在一起。在许多探索性行为中,大鼠和小鼠
迅速,有节奏的运动称为“晶须”,以积极的触摸来来回扫荡晶须
信息。尽管鞭打是有节奏的,但啮齿动物也可以改变晶须的移动方式
所需的感官信息及其特定行为。研究人员几乎可以开始
除了一个关键差距外,晶须系统的运动和触摸之间的“近距离”:我们没有
然而,具有啮齿动物面部肌肉的三维(3D)模型。没有这样的模型,我们将无法
确定大鼠如何改变其肌肉活动以改变晶须运动并获取特定类型的
感官信息。我们不知道哪些晶须运动是通过生物力学固定的,
大鼠可以主动控制的动作。我们无法完全理解发送给晶须的电机命令
肌肉。该提议的核心目标是开发啮齿动物面部的三维(3D)模型
缩小这一差距的肌肉。我们将首先使用触觉细节学,组织学,MRI和
CT扫描量量化啮齿动物面部肌肉的解剖结构和容纳晶须的卵泡。使用此
然后,我们将构建晶须肌肉和卵泡的3D生物力学模型,以模拟
所有晶须的运动。这些模型将在几个不同的完成软件中进行验证和测试
系统,然后用于测试每种晶须相关的特定功能的11个特定预测
肌肉。最后,我们将将啮齿动物面部肌肉的3D模型与描述的现有模型相结合
感觉,晶须运动的触觉一面。这些组合的肌肉感觉模拟将直接比较
具有活跃的动物行为。这项工作朝着关闭电机动作和
获取的感官数据,并有助于解散生物力学和神经控制的相对作用
不同类型的搅拌。拟议的工作将从
对感官和运动皮质区域的主要感觉神经元,涉及控制的脑干区域
晶须运动。更一般地,搅拌代表了一个独特的窗口,即意志控制如何
调节或覆盖集中运动。节奏和非 -
有节奏的运动对嗅探,呼吸,嗅觉,咀嚼,
因此,吞咽和哺乳,拟议的工作可能会以某些神经力学的基础阐明
小儿和老年吞咽困难。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mitra J Hartmann其他文献
Mitra J Hartmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mitra J Hartmann', 18)}}的其他基金
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10650312 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别:
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10115151 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别:
Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons
触须响应三叉神经节神经元的编码特性
- 批准号:
9761589 - 财政年份:2015
- 资助金额:
$ 36.17万 - 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
- 批准号:
9312907 - 财政年份:2015
- 资助金额:
$ 36.17万 - 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
- 批准号:
10424659 - 财政年份:2015
- 资助金额:
$ 36.17万 - 项目类别:
Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons
触须响应三叉神经节神经元的编码特性
- 批准号:
9091661 - 财政年份:2015
- 资助金额:
$ 36.17万 - 项目类别:
Coding properties of Vibrissal-Responsive Trigeminal Ganglion Neurons
触须响应三叉神经节神经元的编码特性
- 批准号:
9317557 - 财政年份:2015
- 资助金额:
$ 36.17万 - 项目类别:
Functional Segregation Within the Whisker-Barrel Neuraxis
晶须桶神经轴内的功能分离
- 批准号:
9029585 - 财政年份:2015
- 资助金额:
$ 36.17万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:62174130
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Mapping the joint-nerve interactome of the knee
绘制膝关节的关节神经相互作用组图
- 批准号:
10607479 - 财政年份:2022
- 资助金额:
$ 36.17万 - 项目类别:
Simulations of spinal cord recruitment to optimize bioelectronic interventions for lower urinary tract control
模拟脊髓募集以优化下尿路控制的生物电子干预措施
- 批准号:
10207979 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别:
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10650312 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别:
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10115151 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别:
Mechanisms of Action of Dorsal Root Ganglion Stimulation for Chronic Pain
背根神经节刺激治疗慢性疼痛的作用机制
- 批准号:
10199761 - 财政年份:2020
- 资助金额:
$ 36.17万 - 项目类别: