Simulations of spinal cord recruitment to optimize bioelectronic interventions for lower urinary tract control
模拟脊髓募集以优化下尿路控制的生物电子干预措施
基本信息
- 批准号:10207979
- 负责人:
- 金额:$ 88.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAfferent NeuronsAnatomic ModelsAnatomyAreaAxonBehaviorBehavioralBladderCatheterizationCommunitiesComplexComputer ModelsCoupledDataData SetDiffusion Magnetic Resonance ImagingDiseaseDorsalElectrophysiology (science)ElementsFelis catusFiberFrequenciesFunctional disorderGoalsImageImplantInjuryInterventionLower urinary tractMagnetic Resonance ImagingMeasuresMedicineMethodsModelingNeurostimulation procedures of spinal cord tissueOrganPathway interactionsPelvisPharmacologic SubstancePlayPopulationPropertyReflex actionResolutionRoleSacral spinal cord structureSpinalSpinal CordStructural ModelsStructureTechniquesTimeTissue ModelUnited StatesUrinationbasebiophysical modeldorsal columneconomic impactimprovedmodels and simulationneural recruitmentneuroregulationnovel therapeuticsopen sourcepressurerecruitsciatic nervesensory inputside effectsimulationspinal reflextoolultra high resolution
项目摘要
Lower urinary tract (LUT) dysfunction occurs in 20-40% of the global population and has an
economic impact measured in tens of billions of dollars every year in the United States. This field
desperately needs new therapies as current treatments, such as clean intermittent catheterization
and pharmaceuticals, have significant side effects. Epidural spinal cord stimulation (SCS)
provides a potential solution. SCS is a rapidly growing area of bioelectronic medicine, with tens
of thousands of implants occurring each year in the United States. While SCS normally activates
the dorsal columns, this technique can also be used to recruit primary sensory neurons as they
enter the spinal cord through the dorsal rootlets. These sensory inputs play a crucial role in
regulating bladder function6 and activating these primary sensory neurons can have powerful
effects on bladder behavior. Through ongoing SPARC efforts, our team has established that high-resolution
SCS can selectively recruit sacral afferents leading to both micturition and continence
reflexes. These data support our ultimate translational goal to develop a SGS therapy to improve
bladder function after injury and disease. However, a critical gap remains to understand, develop
and optimize these neuromodulation therapies. There are no models that accurately represent
the complex sacral spinal anatomy, and previous modelling efforts have consistently ignored the
dorsal rootlets. In this project, we will develop functionalized, anatomically accurate models of the
cat sacral spinal cord. including the dorsal rootlets, and validate these models using
electrophysioloqical data acquired under an existing SPARC effort.
Task 1: Create a pipeline for anatomically accurate, ultra-high resolution finite element
models of the cat sacral spinal cord
Accurate anatomy is critical for biophysical models of stimulation-evoked neural recruitment.
However, these structures have been underappreciated in modelling efforts, in part due to their
anatomical complexity. We will use diffusion tensor imaging (DTI) and structural magnetic
resonance imaging to acquire detailed anatomy of the sacral spinal cord in the cat, including
dorsal and ventral rootlet fiber pathways and develop a pipeline within o2S2PARC segment these
images and create finite element method (FEM) models of these tissues. Year 1: Imaging dataset
of sacral spinal cord in one cat and preliminary pipeline. Year 2: Imaging datasets for four spinal
cords to validate anatomical model creation pipeline.
Task 2: Create finite element models, functionalized with computational axon models, and
validate recruitment using existing electrophysiological data
We will use Sim4Life and the o2S2PARC platform to mesh and populate simplified and
anatomically accurate spinal cord models with populations of pelvic, pudenda! and sciatic nerve
axons that project into the cord. DTI data will be used to create realistic 3D axon trajectories and
the model will be validated using existing data (OT2OD024908). Year 1: Functionalized model of
simplistic spinal cord and simulated effects of epidural stimulation. Year 2: Functionalized model
of anatomically accurate sacral spinal cord with validated recruitment properties.
Task 3: Model spinal reflexes that simulate frequency-dependent excitatory and inhibitory
bladder activity
SCS at different frequencies on the same contact can evoke opposing effects on bladder pressure
through spinal reflexes. To model this effect we will extend SCS recruitment models to include,
for the first time, computational models of spinal reflexes that reproduce observed behavioral
effects. This will create functionalized finite element models that can predict the effects of
stimulation frequency on a target organ. Year 1: Reflex model structure defined and coupled to
finite element stimulations. Year 2: Completed functional simulations of bladder behavior, driven
by SCS, that reproduce frequency-dependent effects.
This project will create credible (https://bit.ly/2NFeYLj) open-source and community extensible
tools, models and simulations to improve SGS-based neuromodulation therapies to enhance
treatments for people living with lower urinary tract dysfunction.
较低的尿路(LUT)功能障碍发生在20-40%的全球人口中,并且具有
在美国,经济影响每年以数百亿美元的速度衡量。这个领域
迫切需要新疗法作为当前治疗,例如干净的间歇性导管插入术
和药物具有显着的副作用。硬膜外脊髓刺激(SCS)
提供了潜在的解决方案。 SCS是生物电子医学的快速生长的领域,有数十个
每年在美国发生的数千个植入物。而SC通常激活
背侧柱,该技术也可用于募集主要感觉神经元
通过背侧根进入脊髓。这些感官输入在
调节膀胱功能6并激活这些主要感觉神经元可以具有强大的
对膀胱行为的影响。通过正在进行的SPARC努力,我们的团队确定了高分辨率
SC可以有选择地募集s骨传入,导致排尿和延续
反射。这些数据支持我们开发SGS治疗以改善的最终转化目标
受伤和疾病后的膀胱功能。但是,还有一个关键的差距仍然要理解,发展
并优化这些神经调节疗法。没有准确代表的模型
复杂的骨脊柱解剖结构以及以前的建模工作一直忽略
背根。在这个项目中,我们将开发功能化的,解剖学精确的模型
猫骨脊髓。包括背部根,并使用
在现有的SPARC工作中获取的电潜可数据。
任务1:为解剖上准确的超高分辨率有限元创建管道
猫脊髓的模型
准确的解剖学对于刺激诱发神经募集的生物物理模型至关重要。
但是,这些结构在建模方面被低估了,部分原因是它们
解剖复杂性。我们将使用扩散张量成像(DTI)和结构磁
共振成像以获取猫中s骨脊髓的详细解剖学,包括
背侧和腹侧根纤维途径并在O2S2PARC段中开发管道
图像并创建这些组织的有限元方法(FEM)模型。 1年:成像数据集
一只猫和初步管道中的骨脊髓。第二年:四个脊柱的成像数据集
启用解剖模型创建管道的绳索。
任务2:创建有限元模型,使用计算轴突模型功能化,并且
使用现有电生理数据验证招聘
我们将使用SIM4LIFE和O2S2PARC平台进行网格和填充简化和填充
具有骨盆,Pudenda种群的解剖学精确脊髓模型!和坐骨神经
将轴突投射到电线中。 DTI数据将用于创建现实的3D轴突轨迹和
该模型将使用现有数据(OT2OD024908)进行验证。 1年:功能化模型
硬膜外刺激的简单脊髓和模拟作用。第二年:功能化模型
具有验证特性的解剖学精确的脊髓。
任务3:模型脊柱反射,模拟频率依赖性兴奋性和抑制作用
膀胱活动
在同一接触时以不同频率的SC会引起对膀胱压力的相反影响
通过脊柱反射。为了建模这种效果,我们将扩展SCS招聘模型以包括,
首次,脊柱反射的计算模型会重现观察到的行为
效果。这将创建功能化的有限元模型,以预测
目标器官上的刺激频率。 1年:反射模型结构定义并耦合到
有限元刺激。第二年:完成膀胱行为的功能模拟,驱动
通过SCS,这种再现依赖频率的效应。
该项目将创建可信(https://bit.ly/2nfeylj)开放源和社区可扩展
工具,模型和模拟以改善基于SGS的神经调节疗法以增强
尿路功能障碍的患者的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert A Gaunt其他文献
Robert A Gaunt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert A Gaunt', 18)}}的其他基金
Simulations of spinal cord recruitment to optimize bioelectronic interventions for lower urinary tract control
模拟脊髓募集以优化下尿路控制的生物电子干预措施
- 批准号:
10469840 - 财政年份:2020
- 资助金额:
$ 88.78万 - 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
- 批准号:
10402064 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
Coordinated Microstimulation of Sacral Afferent Pathways to Control Continence and Micturition Reflexes
协调骶神经传入通路的微刺激来控制失禁和排尿反射
- 批准号:
9903468 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
- 批准号:
10246110 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
- 批准号:
9513136 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
Coordinated Microstimulation of Sacral Afferent Pathways to Control Continence and Micturition Reflexes
协调骶神经传入通路的微刺激来控制失禁和排尿反射
- 批准号:
9309546 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
- 批准号:
10003455 - 财政年份:2017
- 资助金额:
$ 88.78万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:62174130
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Mapping the joint-nerve interactome of the knee
绘制膝关节的关节神经相互作用组图
- 批准号:
10607479 - 财政年份:2022
- 资助金额:
$ 88.78万 - 项目类别:
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10435437 - 财政年份:2020
- 资助金额:
$ 88.78万 - 项目类别:
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10650312 - 财政年份:2020
- 资助金额:
$ 88.78万 - 项目类别:
Models of rodent facial musculature for the study of active tactile sensing
用于研究主动触觉感知的啮齿动物面部肌肉组织模型
- 批准号:
10115151 - 财政年份:2020
- 资助金额:
$ 88.78万 - 项目类别:
Mechanisms of Action of Dorsal Root Ganglion Stimulation for Chronic Pain
背根神经节刺激治疗慢性疼痛的作用机制
- 批准号:
10199761 - 财政年份:2020
- 资助金额:
$ 88.78万 - 项目类别: