Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
基本信息
- 批准号:10246110
- 负责人:
- 金额:$ 50.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAcuteAddressAdherenceAffectAnatomyAnimal ExperimentsAnimal ModelAnimalsAutonomic ganglionAutonomic nervous systemBenchmarkingBiosensorBladderCathetersChronicCodeColonCustomDevelopmentDevicesElectrodesElectrophysiology (science)EvaluationFelis catusFiberFilmGoalsHealthHumanImplantInferior hypogastric plexus structureIntestinesLaboratoriesLower urinary tractMapsMeasurementMeasuresMechanicsMedicineModelingMolecular ConformationMonitorMuscleNerveNerve PlexusNervous system structureNeural PathwaysOrganOrgan ModelOveractive BladderPatternPelvisPerformancePeripheralPeripheral NervesPeripheral Nervous SystemPhysiologic MonitoringPhysiologicalPhysiologyPositioning AttributeQuality of lifeRecording of previous eventsResolutionSeriesSiliconesStomachSurfaceTechnologyTestingThinnessTissuesUnited StatesUrethraUrinary IncontinenceVisceralWorkawakebasebiomaterial compatibilitybody systemburden of illnessclinically relevantcostdesignelectrical impedance tomographyexperimental studyimplantable deviceimprovedin vivomanufacturing processnerve supplyneuroregulationnew technologynovel strategiespressurepreventprogramsrelating to nervous systemsensortool
项目摘要
Visceral organs present unique challenges to studying functional physiology and neural control. Visceral organs
are often surrounded by a nerve plexus that provides distributed innervation along the organ surface and contain
autonomic ganglia that can modulate function locally. Given this complexity, creating functional maps of visceral
organ innervation is challenging. Another challenge is measuring organ state itself. This is significantly
exacerbated by the fact that many of these organs are soft, elastic, and undergo large volume changes.
In this proposal, we will develop soft silicone electrode nets compatible with these unique challenges and that
can envelop visceral organs and deploy high-resolution electrodes to arbitrary positions on the organ surface.
This approach is based on a 3D printed silicone electrode technology. These electrode nets will be augmented
with strain gauge sensors and electrical impedance tomography electrodes to monitor physiological organ state.
Ultimately, this new class of devices will 1) be intrinsically soft and elastic to allow conformation with visceral
organs that undergo large volume changes, 2) integrate organ state sensors based on strain gauges and
electrical impedance tomography, 3) prevent delamination issues typically associated with other thin film
electrode manufacturing processes, and 4) allow rapid customization to cost-effectively transition to any organ
system in animals or humans. This technology is based on materials that have a history of use in biomedical
implants and are therefore potentially suitable for conducting neural mapping and electrophysiological studies of
human organs in vivo.
We will evaluate device performance using the bladder and urethra as a model due to the challenging interface
requirements (e.g. large volume changes) and potential clinical relevance. Overactive bladder and urinary
incontinence affects millions of people worldwide, is associated with costs upwards of $60 billion each year in
the United States, and leads to significant decreases in quality of life. Electrode nets will be tested in acute cat
experiments where we will determine the electrode-tissue mechanical stability, evaluate embedded sensor
performance, and develop functional neural maps of the surface of the bladder and urethra. We will also validate
device performance in a series of chronic animal experiments where device performance will be monitored for
up to four months post-implant. An important feature of this enabling technology and associated manufacturing
process is that these devices will be able to be quickly and cost-effectively redesigned to study other visceral
organ systems including the stomach, intestines, and colon across a range of animal models as well as humans.
内脏器官对研究功能生理和神经控制提出了独特的挑战。内脏器官
通常被神经丛包围,该神经丛沿着器官表面提供分布的神经
可以在本地调节功能的自主神经节。考虑到这种复杂性,创建内脏功能图
器官神经具有挑战性。另一个挑战是衡量器官状态本身。这是显着的
这些器官中的许多人都是软,弹性且体积大的变化,这加剧了这一事实。
在此提案中,我们将开发与这些独特挑战兼容的软硅电极网,并
可以包裹内脏器官,并将高分辨率电极部署到器官表面的任意位置。
这种方法基于3D打印的硅电极技术。这些电极网将得到增强
带有应变量表传感器和电阻抗断层扫描电极以监测生理器官状态。
最终,这类新的设备将1)本质上柔软且弹性,以允许与内脏结合
经历大量变化的器官,2)基于应变计的整合器官状态传感器和
电阻抗层析成像,3)防止通常与其他薄膜相关的分层问题
电极制造过程,4)允许快速自定义以成本效益过渡到任何器官
动物或人类的系统。该技术基于具有生物医学使用史的材料
植入物,因此有可能适合进行神经映射和电生理研究
人体器官在体内。
由于具有挑战性的界面,我们将使用膀胱和尿道作为模型评估设备性能
要求(例如大量变化)和潜在的临床相关性。过度活跃的膀胱和尿液
尿失禁会影响全球数百万的人,每年的成本超过600亿美元
美国,并导致生活质量大幅下降。电极网将在急性猫中测试
我们将确定电极组织机械稳定性,评估嵌入式传感器的实验
性能,并发展膀胱和尿道表面的功能性神经图。我们还将验证
设备性能在一系列慢性动物实验中,将监视设备性能
植入后最多四个月。这项促成技术和相关制造的重要特征
过程是这些设备将能够快速和成本地重新设计以研究其他内脏
在各种动物模型和人类中,包括胃,肠和结肠在内的器官系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert A Gaunt其他文献
Robert A Gaunt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert A Gaunt', 18)}}的其他基金
Simulations of spinal cord recruitment to optimize bioelectronic interventions for lower urinary tract control
模拟脊髓募集以优化下尿路控制的生物电子干预措施
- 批准号:
10207979 - 财政年份:2020
- 资助金额:
$ 50.06万 - 项目类别:
Simulations of spinal cord recruitment to optimize bioelectronic interventions for lower urinary tract control
模拟脊髓募集以优化下尿路控制的生物电子干预措施
- 批准号:
10469840 - 财政年份:2020
- 资助金额:
$ 50.06万 - 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
- 批准号:
10402064 - 财政年份:2017
- 资助金额:
$ 50.06万 - 项目类别:
Coordinated Microstimulation of Sacral Afferent Pathways to Control Continence and Micturition Reflexes
协调骶神经传入通路的微刺激来控制失禁和排尿反射
- 批准号:
9903468 - 财政年份:2017
- 资助金额:
$ 50.06万 - 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
- 批准号:
9513136 - 财政年份:2017
- 资助金额:
$ 50.06万 - 项目类别:
Coordinated Microstimulation of Sacral Afferent Pathways to Control Continence and Micturition Reflexes
协调骶神经传入通路的微刺激来控制失禁和排尿反射
- 批准号:
9309546 - 财政年份:2017
- 资助金额:
$ 50.06万 - 项目类别:
Soft Silicone Electrode Nets: implantable technology for visceral organ neural interfacing and functional evaluation
软硅胶电极网:用于内脏器官神经接口和功能评估的植入技术
- 批准号:
10003455 - 财政年份:2017
- 资助金额:
$ 50.06万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 50.06万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 50.06万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 50.06万 - 项目类别:
Developing near-infrared responsive liquid crystal elastomers for an adjustable pulmonary artery band
开发用于可调节肺动脉带的近红外响应液晶弹性体
- 批准号:
10537663 - 财政年份:2022
- 资助金额:
$ 50.06万 - 项目类别:
Improving Treatment of Stroke: Guiding Endovascular Mechanical Thrombectomy
改善中风治疗:指导血管内机械血栓切除术
- 批准号:
10546005 - 财政年份:2022
- 资助金额:
$ 50.06万 - 项目类别: