Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
基本信息
- 批准号:10610950
- 负责人:
- 金额:$ 59.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsApplication procedureArchivesAreaBreastCase StudyClinicalClinical DataDataDedicationsDetectionDevelopmentDiagnosticDiagnostic ImagingDiscipline of Nuclear MedicineDiseaseDoseEvaluationExplosionGeometryGoalsHalf-LifeImageImaging TechniquesInterventionInterventional ImagingInvestigationIsotopesLabelLungMethodsModelingModernizationMonitorMorphologic artifactsMotionOrganPatientsPerformancePhysicsPositronPositron-Emission TomographyProceduresPropertyProtocols documentationPsychological TransferPublic HealthRadiation Dose UnitResearchResolutionRunningScanningSystemTechniquesTestingTimeTracerTrainingTraining TechnicsValidationWorkaccurate diagnosisassessment applicationbreast imagingcellular imagingchimeric antigen receptor T cellsclinical efficacyclinically relevantconvolutional neural networkdata modelingdeep learningdenoisingdetectordisease diagnosisefficacy evaluationheart motionimprovedinnovationinstrumentationlearning networkloss of functionmolecular imagingneural networkneural network architecturenovelnovel strategiespersonalized medicineproton therapyradiotracerreconstructionresponsesolid statestatisticssuccesstomographytooltreatment response
项目摘要
Project Summary
Clinical and research applications of the PET imaging are rapidly expanding from ever improving diagnostic
and treatment assessment applications to guidance of personalized treatments, ultra-low dose imaging, and
even interventional imaging procedures. Supporting these developments, reconstruction tools that are able to
reliably handle both typical and (ultra-)low count situations, imperfect data, and data from specialized imaging
geometries, with fast (near real-time) reconstruction performance are of crucial importance. The overall goal of
this project is to develop and investigate robust and efficacious Deep Learning (DL) reconstruction approaches
addressing these needs. A unique and innovative feature of the proposed approaches (compared to alternative
DL applications) is the utilization of list-mode data histogrammed into a very efficient histo-image format. TOF
data partitioned into the histo-image format are characterized by strong local properties, thus perfectly fitting
convolutional neural network formalism and making DL training and reconstruction directly from realistic clinical
data (in size and character) highly feasible and practical.
The clinical utility of PET systems has significantly improved over the years thanks to advances in
instrumentation, data corrections, and reconstruction approaches. Nevertheless, full utilization of their potential
through robust and fast quantitative reconstruction remains a challenge especially for the cases of very low count
data, such as in low-count temporal (motion and dynamic) frames, delayed studies, longitudinal low-dose
studies, and studies using new isotopes with long half-life and low positron fraction rates (e.g. in 89Zr-labeled
CAR-T cell imaging), as well as in specialized PET systems with partial angular coverage, for which exact,
artifact-free, reconstruction does not exist. These are the situations for which the developed DL approaches
promise great potential due to the demonstrated success of the DL networks to be trained for imperfect and very
low count data without reliance on accurate data models. Furthermore, pre-trained networks can provide ultra-
fast, near real-time, performance in practical use.
Specific Aim 1 will develop tools for DL PET reconstruction using histo-image partitioning along with
procedures for training of the proposed DL approaches, including novel approaches advancing the state-of-the-
art of DL reconstruction directly from acquired PET data. Specific Aim 2 is directed towards study and evaluation
of the performance of the investigated DL approaches for whole-body and long axial FOV scanner data for the
wide range of counts from applications such as typical FDG, low dose, delayed, low activity isotope scans, and
ultra-short frames in motion correction and dynamic studies. Specific Aim 3 will develop and apply motion
correction protocols involving the proposed DL reconstruction tools and test and study their efficacy for clinically
realistic situations involving non-rigid lung and heart motions. And finally, Specific Aim 4 is dedicated to an
application and study of the developed DL approaches to specialized PET systems with partial angular coverage.
1
项目概要
PET 成像的临床和研究应用随着诊断的不断改进而迅速扩展
和治疗评估应用程序,以指导个性化治疗、超低剂量成像和
甚至介入成像程序。支持这些发展的重建工具能够
可靠地处理典型和(超)低计数情况、不完美数据以及来自专业成像的数据
具有快速(近实时)重建性能的几何图形至关重要。总体目标为
该项目旨在开发和研究稳健且有效的深度学习 (DL) 重建方法
解决这些需求。所提出的方法的独特和创新特征(与替代方法相比)
深度学习应用程序)是利用列表模式数据直方图绘制成非常有效的组织图像格式。飞行时间
划分为 histo-image 格式的数据具有很强的局部属性,因此完美拟合
卷积神经网络形式主义,直接从现实临床进行深度学习训练和重建
数据(大小和特征)高度可行和实用。
多年来,由于技术进步,PET 系统的临床实用性得到了显着提高。
仪器、数据校正和重建方法。尽管如此,充分发挥他们的潜力
通过稳健和快速的定量重建仍然是一个挑战,特别是对于计数非常低的情况
数据,例如低计数时间(运动和动态)帧、延迟研究、纵向低剂量
研究,以及使用具有长半衰期和低正电子分数率的新同位素的研究(例如 89Zr 标记的同位素)
CAR-T 细胞成像),以及具有部分角度覆盖的专用 PET 系统,为此,
无伪影,重建不存在。这些是开发的深度学习方法所针对的情况
由于 DL 网络已被证明能够成功地针对不完美和非常严重的问题进行训练,因此有望带来巨大的潜力
低计数数据,不依赖准确的数据模型。此外,预训练网络可以提供超
快速、接近实时、实际使用中的性能。
具体目标 1 将开发使用组织图像分区进行 DL PET 重建的工具
拟议的深度学习方法的培训程序,包括推进现状的新方法
直接从采集的 PET 数据进行 DL 重建的艺术。具体目标 2 旨在研究和评估
所研究的 DL 方法针对全身和长轴 FOV 扫描仪数据的性能
典型 FDG、低剂量、延迟、低活性同位素扫描等应用的广泛计数
运动校正和动态研究中的超短帧。具体目标 3 将开发和应用运动
涉及所提出的 DL 重建工具的校正方案,并测试和研究其临床功效
涉及非刚性肺和心脏运动的现实情况。最后,具体目标 4 致力于
将已开发的深度学习方法应用于具有部分角度覆盖的专用 PET 系统。
1
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recovery of the spatially-variant deformations in dual-panel PET reconstructions using deep-learning.
使用深度学习恢复双面板 PET 重建中的空间变异变形。
- DOI:
- 发表时间:2024-02-28
- 期刊:
- 影响因子:3.5
- 作者:Raj, Juhi;Millardet, Maël;Krishnamoorthy, Srilalan;Karp, Joel S;Surti, Suleman;Matej, Samuel
- 通讯作者:Matej, Samuel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAMUEL MATEJ其他文献
SAMUEL MATEJ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAMUEL MATEJ', 18)}}的其他基金
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
- 批准号:
10441527 - 财政年份:2021
- 资助金额:
$ 59.85万 - 项目类别:
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
- 批准号:
10276952 - 财政年份:2021
- 资助金额:
$ 59.85万 - 项目类别:
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
- 批准号:
10441527 - 财政年份:2021
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6736231 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6875217 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
7653119 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6625757 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
6478531 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
8235078 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
- 批准号:
7809575 - 财政年份:2002
- 资助金额:
$ 59.85万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 59.85万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 59.85万 - 项目类别:
Comprehensive analysis of macromolecule structural variability in CryoEM/CryoET
CryoEM/CryoET 中大分子结构变异性的综合分析
- 批准号:
10711754 - 财政年份:2023
- 资助金额:
$ 59.85万 - 项目类别:
Discovery and Applied Research for Technological Innovations to ImproveHuman Health
改善人类健康的技术创新的发现和应用研究
- 批准号:
10841979 - 财政年份:2023
- 资助金额:
$ 59.85万 - 项目类别:
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 59.85万 - 项目类别: