Fourier-based Methods for Image Reconstruction in PET

基于傅立叶的 PET 图像重建方法

基本信息

  • 批准号:
    8235078
  • 负责人:
  • 金额:
    $ 39.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall objective of this project is to improve the quality of images obtained by positron emission tomography (PET) for human studies in clinical nuclear medicine. This will be done by developing a fast and accurate computer method for generating images from basic photon-count data acquired by PET scanners having detectors with time-of-flight (TOF) capability. Data from TOF-PET systems contain additional information that permits better spatial localization of coincidence events, compared to conventional (non-TOF) scanners. TOF-PET scanners have been shown to yield significantly better images, especially for large patients; however, the full benefit of TOF has not yet been achieved in the clinical environment due to the relatively slow reconstruction techniques available for TOF-PET data. The proposed work involves the development and testing of an iterative computer method for statistical image reconstruction that makes specific use of the localized nature of TOF-PET data. The method is called DIRECT, short for Direct Image Reconstruction for TOF, and it involves grouping the TOF-PET data based on a novel combination of angular intervals in data space and voxel-like partitions in image space. The hypothesis is that this method will achieve high quantitative accuracy, combined with high computational efficiency, which is critical for obtaining these quantitative images in the clinical environment. High computational efficiency is needed for human studies, since a large amount of data is collected, the image space is sampled on a fine grid, and many iterations are required to accurately recover the activity levels at all locations in the body. Multi-frame studies (e.g., dual time point imaging, dynamic studies) involve multiple runs of the image reconstruction process for which a fast reconstruction technique is essential. In the DIRECT method, the novel grouping of TOF-PET data leads to high efficiency for many of the reconstruction operations; in particular, this grouping enables the operations of forward-projection and back-projection to be done using efficient Fourier-based methods. Achievement of high accuracy combined with high computational efficiency would be a significant step towards realizing the full potential of TOF-PET in the clinical environment, since in current practice performance is compromised for efficiency in order to complete routine whole-body studies in a practical time. Specific aim 1 is designed to formulate, implement, and investigate the DIRECT method for iterative image reconstruction in TOF-PET, focusing on the core components of the method. Specific aim 2 is designed to formulate, implement, and investigate those components of the DIRECT method that involve compensation for the non-ideal characteristics of measured data, including attenuation, scatter, randoms, and detector normalization. Specific aim 3 involves evaluation of the performance of DIRECT in comparison with other TOF-PET reconstruction techniques. PUBLIC HEALTH RELEVANCE: Positron emission tomography is now well established as a valuable imaging tool for the diagnosis of cancer and other diseases and for the planning and monitoring of treatment. The proposed work involves new methods for computer processing of data from a technically advanced generation of PET scanner; the new computer methods are designed to enable these scanners to reach their full potential, leading to improved accuracy of PET images. The proposed work is relevant to public health, since an improvement in the accuracy of PET images would lead to more accurate diagnosis of cancer and other diseases, more accurate planning of treatment, and more accurate monitoring of the response to therapy, leading in turn to better patient outcomes.
描述(由申请人提供):该项目的总体目标是提高临床核医学人体研究中正电子发射断层扫描(PET)获得的图像质量。这将通过开发一种快速、准确的计算机方法来实现,该方法可根据具有飞行时间 (TOF) 功能的探测器的 PET 扫描仪采集的基本光子计数数据生成图像。与传统(非 TOF)扫描仪相比,TOF-PET 系统的数据包含额外的信息,可以更好地空间定位符合事件。 TOF-PET 扫描仪已被证明可以产生明显更好的图像,特别是对于体型较大的患者;然而,由于 TOF-PET 数据的重建技术相对较慢,TOF 的全部优势尚未在临床环境中实现。拟议的工作涉及开发和测试用于统计图像重建的迭代计算机方法,该方法专门利用 TOF-PET 数据的局部性质。该方法称为 DIRECT,是 TOF 直接图像重建的缩写,它涉及基于数据空间中的角间隔和图像空间中的体素类分区的新颖组合对 TOF-PET 数据进行分组。假设该方法将实现高定量精度和高计算效率,这对于在临床环境中获得这些定量图像至关重要。人体研究需要高计算效率,因为需要收集大量数据,在精细网格上对图像空间进行采样,并且需要多次迭代才能准确恢复身体所有位置的活动水平。多帧研究(例如,双时间点成像、动态研究)涉及图像重建过程的多次运行,为此快速重建技术至关重要。在 DIRECT 方法中,TOF-PET 数据的新颖分组可以提高许多重建操作的效率;特别是,这种分组使得可以使用高效的基于傅里叶的方法来完成前向投影和后向投影的操作。实现高精度与高计算效率相结合将是在临床环境中实现 TOF-PET 全部潜力的重要一步,因为在当前的实践中,为了在实际时间内完成常规全身研究,性能会因效率而受到影响。具体目标 1 旨在制定、实施和研究 TOF-PET 中迭代图像重建的 DIRECT 方法,重点关注该方法的核心组成部分。具体目标 2 旨在制定、实施和研究 DIRECT 方法的那些组件,这些组件涉及对测量数据的非理想特性的补偿,包括衰减、散射、随机性和探测器归一化。具体目标 3 涉及评估 DIRECT 与其他 TOF-PET 重建技术的性能比较。公共健康相关性:正电子发射断层扫描现已成为一种有价值的成像工具,可用于诊断癌症和其他疾病以及用于规划和监测治疗。拟议的工作涉及对来自技术先进的一代 PET 扫描仪的数据进行计算机处理的新方法;新的计算机方法旨在使这些扫描仪能够充分发挥其潜力,从而提高 PET 图像的准确性。拟议的工作与公共卫生相关,因为 PET 图像准确性的提高将导致更准确地诊断癌症和其他疾病、更准确地制定治疗计划以及更准确地监测治疗反应,进而导致更好的患者治疗效果。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fourier-based reconstruction for fully 3-D PET: optimization of interpolation parameters.
基于傅里叶的全 3-D PET 重建:插值参数的优化。
  • DOI:
  • 发表时间:
    2006-07
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Matej, Samuel;Kazantsev, Ivan G
  • 通讯作者:
    Kazantsev, Ivan G
Comparison of list-mode and DIRECT approaches for time-of-flight PET reconstruction.
飞行时间 PET 重建的列表模式和 DIRECT 方法的比较。
  • DOI:
  • 发表时间:
    2012-07
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Daube;Matej, Samuel;Werner, Matthew E;Surti, Suleman;Karp, Joel S
  • 通讯作者:
    Karp, Joel S
Resolution Enhancement in PET Reconstruction Using Collimation.
使用准直增强 PET 重建的分辨率。
  • DOI:
  • 发表时间:
    2013-02
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Metzler, Scott D;Matej, Samuel;Karp, Joel S
  • 通讯作者:
    Karp, Joel S
Fisher information-based evaluation of image quality for time-of-flight PET.
基于 Fisher 信息的飞行时间 PET 图像质量评估。
  • DOI:
  • 发表时间:
    2010-02
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Vunckx, Kathleen;Zhou, Lin;Matej, Samuel;Defrise, Michel;Nuyts, Johan
  • 通讯作者:
    Nuyts, Johan
GPU-Accelerated Forward and Back-Projections with Spatially Varying Kernels for 3D DIRECT TOF PET Reconstruction.
用于 3D DIRECT TOF PET 重建的具有空间变化内核的 GPU 加速正向和反向投影。
  • DOI:
  • 发表时间:
    2013-02
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Ha, S;Matej, S;Ispiryan, M;Mueller, K
  • 通讯作者:
    Mueller, K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAMUEL MATEJ其他文献

SAMUEL MATEJ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAMUEL MATEJ', 18)}}的其他基金

Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
  • 批准号:
    10441527
  • 财政年份:
    2021
  • 资助金额:
    $ 39.05万
  • 项目类别:
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
  • 批准号:
    10276952
  • 财政年份:
    2021
  • 资助金额:
    $ 39.05万
  • 项目类别:
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
  • 批准号:
    10610950
  • 财政年份:
    2021
  • 资助金额:
    $ 39.05万
  • 项目类别:
Deep Learning Reconstruction for Improved TOF PET Using Histo-Image Partitioning
使用组织图像分区进行深度学习重建以改进 TOF PET
  • 批准号:
    10441527
  • 财政年份:
    2021
  • 资助金额:
    $ 39.05万
  • 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
  • 批准号:
    6736231
  • 财政年份:
    2002
  • 资助金额:
    $ 39.05万
  • 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
  • 批准号:
    6875217
  • 财政年份:
    2002
  • 资助金额:
    $ 39.05万
  • 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
  • 批准号:
    7653119
  • 财政年份:
    2002
  • 资助金额:
    $ 39.05万
  • 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
  • 批准号:
    6625757
  • 财政年份:
    2002
  • 资助金额:
    $ 39.05万
  • 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
  • 批准号:
    6478531
  • 财政年份:
    2002
  • 资助金额:
    $ 39.05万
  • 项目类别:
Fourier-based Methods for Image Reconstruction in PET
基于傅立叶的 PET 图像重建方法
  • 批准号:
    7809575
  • 财政年份:
    2002
  • 资助金额:
    $ 39.05万
  • 项目类别:

相似国自然基金

智能车定位地图匹配方法中的交叉注意力机制研究
  • 批准号:
    62373250
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于小波交叉注意力机制的单幅图像可变光圈散焦增强研究
  • 批准号:
    62301332
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自注意力机制的脑电信号智能特征提取芯片关键技术
  • 批准号:
    62374121
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
复相干统计融合全局注意力模型的SAR微弱痕迹检测方法
  • 批准号:
    62301403
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于卷积-自注意力混合结构的脑静脉血栓疾病智能诊断模型研究
  • 批准号:
    62306190
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Monitoring of disease-induced skin VOC patterns from handheld and wearable chemical sensors
通过手持式和可穿戴化学传感器监测疾病引起的皮肤 VOC 模式
  • 批准号:
    10426964
  • 财政年份:
    2022
  • 资助金额:
    $ 39.05万
  • 项目类别:
Monitoring of disease-induced skin VOC patterns from handheld and wearable chemical sensors
通过手持式和可穿戴化学传感器监测疾病引起的皮肤 VOC 模式
  • 批准号:
    10651755
  • 财政年份:
    2022
  • 资助金额:
    $ 39.05万
  • 项目类别:
Preclinical Core
临床前核心
  • 批准号:
    10673853
  • 财政年份:
    2020
  • 资助金额:
    $ 39.05万
  • 项目类别:
Preclinical Core
临床前核心
  • 批准号:
    10455491
  • 财政年份:
    2020
  • 资助金额:
    $ 39.05万
  • 项目类别:
Preclinical Core
临床前核心
  • 批准号:
    10224311
  • 财政年份:
    2020
  • 资助金额:
    $ 39.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了