Modeling Best Approaches for Cardiovascular Disease Prevention in Cancer Survivors
模拟癌症幸存者心血管疾病预防的最佳方法
基本信息
- 批准号:10608446
- 负责人:
- 金额:$ 71.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAspirinAtherosclerosisAttenuatedBiochemicalBreastCalciumCalibrationCancer ModelCancer SurvivorCardiovascular DiseasesCardiovascular systemCause of DeathCessation of lifeClinical TrialsCost Effectiveness AnalysisDataDecision MakingDevelopmentDisease OutcomeGeneral PopulationGeneticGenetic RiskGoalsGuidelinesHigh PrevalenceHyperlipidemiaHypertensionIncidenceLifeLipidsLungMalignant NeoplasmsMethodsModelingMorbidity - disease rateNatural HistoryOutcomePatientsPopulationPopulation HeterogeneityPopulations at RiskPrevention strategyPreventive carePrimary PreventionProstateQuality of lifeQuality-Adjusted Life YearsRadiation therapyRandomized, Controlled TrialsRecommendationRecurrenceRecurrent Malignant NeoplasmRegional DiseaseRiskRisk FactorsRisk ReductionSourceStratificationSurvivorsTestingTreatment-Related CancerUnited StatesWomancancer recurrencecancer riskcancer therapycardiovascular disorder preventioncardiovascular disorder riskchemotherapychest computed tomographycohortcomorbiditycomparative effectivenesscomputed tomography screeningcoronary calcium scoringcost effectivenessdata harmonizationeffectiveness evaluationethnic minoritygenetic risk factorimprovedin silicoinnovationlow dose computed tomographymenmodels and simulationmortalitymulti-ethnicnovelpolygenic risk scorepopulation basedracial minoritysexsimulationtargeted treatment
项目摘要
PROJECT SUMMARY
The overall goal of this proposal is to identify optimal strategies for primary prevention of cardiovascular
disease (CVD) for survivors of breast (BC), prostate (PC) and lung (LC) cancer. All together, there are >6
million BC, PC and LC survivors in the US. While cancer is a major source of morbidity and mortality, the
majority of BC and PC as well as many early-stage LC survivors die of comorbidities, particularly CVD. Cancer
survivors have increased rates of both CVD risk factors as well as CVD itself, and CVD is the leading cause of
death among BC and PC survivors. Among LC survivors, CVD-related deaths account for ~30% of mortality;
this proportion is higher among the growing number identified with early-stage LC. In the general population,
primary prevention with lipid-lowering agents (i.e., statins) and aspirin is highly effective for decreasing CVD
incidence and mortality, but these guidelines for primary CVD prevention cannot be extrapolated to cancer
survivors. Approaches for CVD prevention in cancer survivors need to consider traditional risk factors
(including genetic risks) for CVD as well as CVD risk from certain cancer treatments. Additionally, competing
risks from cancer recurrence or comorbidities may limit the long-term benefits of primary CVD prevention.
Finally, the cancer itself, cancer treatment-related complications, and a higher prevalence of comorbidities can
negatively impact quality-of-life and attenuate the absolute improvement in quality-adjusted life expectancy and
the cost effectiveness (CE) of primary CVD prevention. Lack of specific data applicable to cancer survivors has
profound negative impact, resulting in worse cardiovascular outcomes. It is unlikely that randomized controlled
trials (RCT) assessing the benefits of CVD preventive strategies for cancer survivors will be ever conducted.
Thus, there is an urgent need to use alternative methods to optimize preventive care recommendations for this
growing population. We propose using simulation modeling, an approach complementary to clinical trials, to
assess the harms, benefits, and CE of CVD prevention in diverse populations of cancer survivors. The Specific
Aims are to: (1) Develop an Integrated Multi-Ethnic Cancer model (IMEC) to incorporate the development,
progression, and outcomes of CVD among a diverse population of BC, PC and LC survivors; (2) Identify BC
survivors who will benefit from and determine the CE of primary CVD prevention; (3) Determine effectiveness
and CE of primary CVD prevention in PC survivors; and (4) Determine the most effective and CE CVD
prevention strategies for LC survivors. To achieve these Aims, we will use data from several large, diverse and
nationally representative, population-based cancer and cardiovascular cohorts to create, calibrate, and validate
IMEC (Aim 1). Then, we will use the model to test our hypothesis by conducting in-silico RCTs (Aims 2-4). Our
study is innovative in using state-of-the-art modeling methods and novel data harmonization, statistical and
simulation approaches to optimize the use of CVD preventive strategies in cancer survivors. The results will
have direct implications for the management of large numbers of survivors and guide patient decision-making.
项目概要
该提案的总体目标是确定心血管疾病一级预防的最佳策略
乳腺癌 (BC)、前列腺癌 (PC) 和肺癌 (LC) 幸存者的疾病 (CVD)。总共有 >6 个
美国有 100 万 BC、PC 和 LC 幸存者。虽然癌症是发病率和死亡率的一个主要来源,
大多数 BC 和 PC 以及许多早期 LC 幸存者死于合并症,特别是 CVD。癌症
幸存者的 CVD 危险因素以及 CVD 本身的发生率均有所增加,而 CVD 是导致 CVD 的主要原因
BC 和 PC 幸存者的死亡。在 LC 幸存者中,CVD 相关死亡约占死亡率的 30%;
在越来越多的早期 LC 患者中,这一比例更高。在一般人群中,
使用降脂药(即他汀类药物)和阿司匹林进行一级预防对于减少心血管疾病非常有效
发病率和死亡率,但这些 CVD 一级预防指南不能推广到癌症
幸存者。癌症幸存者的 CVD 预防方法需要考虑传统危险因素
CVD 的风险(包括遗传风险)以及某些癌症治疗带来的 CVD 风险。此外,竞争
癌症复发或合并症的风险可能会限制心血管疾病一级预防的长期益处。
最后,癌症本身、癌症治疗相关的并发症以及较高的合并症患病率可以
对生活质量产生负面影响并削弱质量调整预期寿命的绝对改善
CVD 初级预防的成本效益(CE)。缺乏适用于癌症幸存者的具体数据
深远的负面影响,导致更糟糕的心血管结果。随机对照不太可能
将进行评估 CVD 预防策略对癌症幸存者的益处的试验(RCT)。
因此,迫切需要使用替代方法来优化该疾病的预防保健建议
人口不断增长。我们建议使用模拟建模,这是一种补充临床试验的方法,
评估不同癌症幸存者人群中 CVD 预防的危害、益处和 CE。具体
目标是: (1) 开发综合多种族癌症模型 (IMEC),以纳入以下发展:
不同人群的 BC、PC 和 LC 幸存者中 CVD 的进展和结果; (2) 识别BC
将受益于并确定 CVD 初级预防的 CE 的幸存者; (3) 确定有效性
PC 幸存者的 CVD 初级预防的 CE; (4) 确定最有效的 CE CVD
LC 幸存者的预防策略。为了实现这些目标,我们将使用来自多个大型、多样化和
具有全国代表性、基于人群的癌症和心血管队列来创建、校准和验证
IMEC(目标 1)。然后,我们将使用该模型通过进行计算机随机对照试验(目标 2-4)来检验我们的假设。我们的
该研究在使用最先进的建模方法和新颖的数据协调、统计和
模拟方法优化癌症幸存者的 CVD 预防策略的使用。结果将
对大量幸存者的管理有直接影响并指导患者决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung Yin Kong其他文献
Chung Yin Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chung Yin Kong', 18)}}的其他基金
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10317717 - 财政年份:2021
- 资助金额:
$ 71.3万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10654616 - 财政年份:2021
- 资助金额:
$ 71.3万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10317359 - 财政年份:2021
- 资助金额:
$ 71.3万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10450181 - 财政年份:2021
- 资助金额:
$ 71.3万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10451668 - 财政年份:2021
- 资助金额:
$ 71.3万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10668248 - 财政年份:2021
- 资助金额:
$ 71.3万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8548101 - 财政年份:2010
- 资助金额:
$ 71.3万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8799653 - 财政年份:2010
- 资助金额:
$ 71.3万 - 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
- 批准号:
8115790 - 财政年份:2009
- 资助金额:
$ 71.3万 - 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
- 批准号:
8115790 - 财政年份:2009
- 资助金额:
$ 71.3万 - 项目类别:
相似国自然基金
阿司匹林丁香酚酯促进高脂血症大鼠胆汁酸代谢的分子机制与潜在靶点挖掘
- 批准号:32373071
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
阿司匹林通过靶向MGLL介导的AKR1C1/铁死亡通路逆转子宫内膜样腺癌孕激素抵抗的机制研究
- 批准号:82373390
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
阿司匹林通过乙酰化TRAF2干扰TRAF2-TRADD蛋白质互作预防EVT侵袭功能障碍的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
阿司匹林靶向细粒棘球蚴5-HTR/GLUT轴治疗囊型包虫病的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
阿司匹林丁香酚酯抑制血小板活化的分子机制及作用靶点
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Glycocalyx Regeneration to Heal Vascular Inflammation and Atherosclerosis
糖萼再生治愈血管炎症和动脉粥样硬化
- 批准号:
10545041 - 财政年份:2022
- 资助金额:
$ 71.3万 - 项目类别:
Metformin BenefIts Lower Extremities with Intermittent Claudication (MOBILE_IC)
二甲双胍有益于间歇性跛行的下肢 (MOBILE_IC)
- 批准号:
10426266 - 财政年份:2022
- 资助金额:
$ 71.3万 - 项目类别:
Metformin BenefIts Lower Extremities with Intermittent Claudication (MOBILE_IC)
二甲双胍有益于间歇性跛行的下肢 (MOBILE_IC)
- 批准号:
10257312 - 财政年份:2022
- 资助金额:
$ 71.3万 - 项目类别:
Glycocalyx Regeneration to Heal Vascular Inflammation and Atherosclerosis
糖萼再生治愈血管炎症和动脉粥样硬化
- 批准号:
10347882 - 财政年份:2022
- 资助金额:
$ 71.3万 - 项目类别:
Harnessing Big Data to Identify Effective Peripheral Artery Disease Treatments in Chronic Kidney Disease
利用大数据确定慢性肾脏病的有效外周动脉疾病治疗方法
- 批准号:
10375593 - 财政年份:2021
- 资助金额:
$ 71.3万 - 项目类别: