Computational Tools for Next Generation Volumetric Cone Beam Computed Tomography

下一代体积锥形束计算机断层扫描的计算工具

基本信息

  • 批准号:
    9096789
  • 负责人:
  • 金额:
    $ 51.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cone beam CT (CBCT) imaging is becoming an indispensable tool in image guided interventions and many other clinical applications. The data processing method in current CBCT imaging is, however, deficient in multiple aspects, which often leads to severe artifacts and results in high imaging dose to the patients. The poor image quality causes much uncertainty in clinical decision-making and seriously impedes the maximal utilization of the technology. This project is directed at developing CBCT into a clinically accurate and reliable technique for delineation of tumor target, interventional guidance and radiation therapy treatment planning. In response to NIH PAR-09-218, we have assembled a team of investigators comprised of leaders in the fields of radiation oncology, medical physics, image and signal processing, optimization and applied mathematics and established research themes and projects that unify the common interests and expertise of these investigators. We draw on our extensive experience in CBCT imaging and scientific computing to develop the next generation of artifact-free and ultra-low dose CBCT. A number of innovative strategies to dealing with sparse, noisy, and missing data in CBCT imaging will be established. Specific aims are: (1) To achieve ultra-low dose CBCT by utilization of patient-specific prior data and compressed sensing; (2) to develop a divide-and-conquer approach for metal artifact removal in CBCT reconstruction; and (3) to obtain motion artifact-free images by effective use of inter-phase correlation of the projections. Successful completion of this project will provide high quality CBCT images with orders of magnitude less imaging dose. For image guided radiation therapy, the improved image quality will make accurate CBCT-based dose calculation and replanning possible, which will lay the foundation for next generation of adaptive therapy to optimally compensate for the patient setup error and inter- fractional anatomy change. With the reduction in imaging dose, the proposed technique will significantly reduce the risk of radiation-induced secondary cancers and contribute to the safe and efficient use of volumetric X-ray imaging techniques in routine clinical practice.
描述(由申请人提供):锥束CT(CBCT)成像已成为图像引导干预措施和许多其他临床应用中必不可少的工具。但是,当前CBCT成像中的数据处理方法在多个方面缺乏,这通常会导致严重的伪像,并导致患者的高成像剂量。图像质量差会导致临床决策的很大不确定性,并严重阻碍了技术的最大利用。该项目旨在将CBCT开发为一种临床准确且可靠的技术,用于描述肿瘤靶标,介入指导和放射治疗治疗计划。为了应对NIH PAR-09-218,我们组建了一个研究人员团队,该研究人员由辐射肿瘤学,医学物理学,图像和信号处理,优化和应用数学以及建立的研究主题和项目组成,并统一了这些研究者的共同利益和专业知识。我们借鉴了我们在CBCT成像和科学计算方面的丰富经验,以开发下一代无伪影和超低剂量CBCT。将建立许多创新的策略来处理CBCT成像中稀疏,嘈杂和缺少数据的策略。具体目的是:(1)通过利用患者特异性的先前数据和压缩感应来实现超低剂量CBCT; (2)为CBCT重建中的金属伪像去除金属伪像的方法; (3)通过有效使用投影的相关相关性来获得无运动伪影图像。该项目的成功完成将提供高质量的CBCT图像,而成像剂量的数量级。对于图像引导的放射疗法,改进的图像质量将使基于CBCT的剂量计算并进行重新融合,这将为下一代的适应性疗法奠定基础,以最佳补偿患者的设置误差和分数解剖学变化。随着成像剂量的降低,该提出的技术将显着降低辐射引起的二次癌症的风险,并在常规临床实践中安全有效地利用体积X射线成像技术。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging.
  • DOI:
    10.1002/smll.201500907
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    O. Volotskova;Conroy Sun;J. Stafford;A. Koh;Xiaowei Ma;Zhen Cheng;B. Cui;G. Pratx;L. Xing
  • 通讯作者:
    O. Volotskova;Conroy Sun;J. Stafford;A. Koh;Xiaowei Ma;Zhen Cheng;B. Cui;G. Pratx;L. Xing
Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.
基于贝叶斯方法的锥束X射线发光计算机断层扫描。
  • DOI:
    10.1109/tmi.2016.2603843
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Zhang G;Liu F;Liu J;Luo J;Xie Y;Bai J;Xing L
  • 通讯作者:
    Xing L
共 2 条
  • 1
前往

Lei Xing的其他基金

Improving the Safety and Quality of Eye Plaque Brachytherapy by Assembly with Intensity Modulated Loading
通过调强加载组装提高眼斑近距离治疗的安全性和质量
  • 批准号:
    10579754
    10579754
  • 财政年份:
    2023
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
Development of AI-Augmented quality assurance tools for radiation therapy
开发用于放射治疗的人工智能增强质量保证工具
  • 批准号:
    10558155
    10558155
  • 财政年份:
    2023
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
Leveraging deep learning for markerless motion management in radiation therapy
利用深度学习进行放射治疗中的无标记运动管理
  • 批准号:
    10617647
    10617647
  • 财政年份:
    2021
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
Leveraging deep learning for markerless motion management in radiation therapy
利用深度学习进行放射治疗中的无标记运动管理
  • 批准号:
    10374171
    10374171
  • 财政年份:
    2021
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
  • 批准号:
    10530681
    10530681
  • 财政年份:
    2018
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
Radioluminescence dosimetry solution for precision radiation therapy
用于精准放射治疗的放射发光剂量测定解决方案
  • 批准号:
    10160833
    10160833
  • 财政年份:
    2018
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
  • 批准号:
    10089148
    10089148
  • 财政年份:
    2018
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
  • 批准号:
    10360435
    10360435
  • 财政年份:
    2018
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
Radioluminescence dosimetry solution for precision radiation therapy
用于精准放射治疗的放射发光剂量测定解决方案
  • 批准号:
    10418642
    10418642
  • 财政年份:
    2018
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
DASSIM-RT and Compressed Sensing-Based Inverse Planning
DASSIM-RT 和基于压缩感知的逆规划
  • 批准号:
    9269990
    9269990
  • 财政年份:
    2014
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:

相似国自然基金

基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
  • 批准号:
    51009131
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
  • 批准号:
    50178004
  • 批准年份:
    2001
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

A novel data-driven approach for personalizing smoking cessation pharmacotherapy
一种新的数据驱动的个性化戒烟药物治疗方法
  • 批准号:
    10437438
    10437438
  • 财政年份:
    2022
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
A closed-loop gravity infusion control device
一种闭环重力输液控制装置
  • 批准号:
    10384629
    10384629
  • 财政年份:
    2022
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
A novel data-driven approach for personalizing smoking cessation pharmacotherapy
一种新的数据驱动的个性化戒烟药物治疗方法
  • 批准号:
    10578721
    10578721
  • 财政年份:
    2022
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
AI-assisted behavioral profiling of an invertebrate model to identify new psychedelic therapeutics for stimulant use disorders
人工智能辅助无脊椎动物模型的行为分析,以确定兴奋剂使用障碍的新迷幻疗法
  • 批准号:
    10467072
    10467072
  • 财政年份:
    2022
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别:
Mechanisms and Predictors of Change in App-Based Mindfulness Training for Adolescents
基于应用程序的青少年正念训练变化的机制和预测因素
  • 批准号:
    10207235
    10207235
  • 财政年份:
    2021
  • 资助金额:
    $ 51.74万
    $ 51.74万
  • 项目类别: