Radioluminescence dosimetry solution for precision radiation therapy
用于精准放射治疗的放射发光剂量测定解决方案
基本信息
- 批准号:10160833
- 负责人:
- 金额:$ 47.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAlgorithmsAutomationBiocompatible Coated MaterialsCalibrationCancer PatientCharacteristicsClinicClinicalClinical assessmentsCollaborationsCollimatorCommunitiesComplexConsumptionCountryDataData AnalysesData CollectionDoseElectron BeamEnsureEnvironmentFeedbackFutureHigh-Dose Rate BrachytherapyImageImaging TechniquesIncidenceIndustrializationIntensity-Modulated RadiotherapyLightLinear Accelerator Radiotherapy SystemsMalignant NeoplasmsManualsMeasurementMeasuresMethodsModalityModernizationMonte Carlo MethodNatureOperative Surgical ProceduresOpticsPatientsPerformancePhotonsPositioning AttributeProceduresProcessRadiationRadiation AccidentsRadiation OncologyRadiation therapyResearchRoentgen RaysSafetySeriesSignal TransductionSoftware ToolsSurfaceSystemTechnologyTestingTherapeuticTimeWaterWorkanalytical toolbasecheckpoint therapychemotherapyclinical applicationclinical research siteclinically translatablecostdata acquisitiondesigndigitaldosimetryhuman errorimage guided radiation therapyimaging systemimprovedindexingnovelnovel strategiesoptical imagingpalliationprogramsproton therapyprototypequality assurancereal-time imagesresponsesuccesstherapy developmenttool
项目摘要
Radioluminescence dosimetry solution for precision radiation therapy
Project summary
Radiation therapy (RT) is an important modality for cancer management. Clinically, over 60% of all
cancer patients in the US receive RT each year as therapy or for palliation, or as an adjunct to surgery or
chemotherapy. There is also increased evidence that RT in combination with checkpoint immunotherapy
is highly effective in treating a subset of cancer patients. In practice, however, because of the invisible
nature of X-ray and its complex interaction process with media, how to ensure the geometric and
dosimetric accuracy of incident RT beams presents a significant challenge in precision RT and critically
determines the success of patient treatment. In this project, we form an academic-industrial collaboration
to investigate and create a clinically translatable solution for substantially improved RT quality assurance
(QA) using a radioluminescence imaging technique recently developed at Stanford. On the basis of our
promising preliminary work, we hypothesize that the accuracy, efficacy and cost of geometric and
dosimetric QA measurements of linear accelerators (LINACs) can be substantially improved with the use
of radioluminecsnce imaging strategy. With the proposed research, we anticipate that submillimeter
accuracy in geometric measurements and better than 3% accuracy in dosimetric measurements will be
readily achievable with orders of magnitude less time and effort as compared to current practice, removing
a major workflow bottleneck in clinical QA and reducing potential radiation treatment errors. This
research presents a first-of-its-kind machine QA strategy capable of instantaneously measuring complex
geometric and dosimetric characteristics of LINACs. If successful, the partnership will lead to a much
safer and more efficient radiation oncology practice, and enable patients to truly benefit from modern RT
modalities such as VMAT and IMRT and SBRT. In addition, the proposed strategy is quite general and
the system developed here will also be valuable for QA applications of other treatment modalities, such
as proton therapy and high-dose rate (HDR) brachytherapy.
用于精确放射治疗的辐射发光剂量测定溶液
项目摘要
放射疗法(RT)是癌症管理的重要方式。临床上,超过60%
美国的癌症患者每年接受RT作为治疗或进行抑制,或作为手术或
化学疗法。也有越来越多的证据表明RT与检查点免疫疗法结合
在治疗一部分癌症患者方面非常有效。但是,实际上,由于无形
X射线的性质及其与媒体的复杂交互过程,如何确保几何和
事件RT梁的剂量准确性提出了精确的RT的重大挑战,并且很严格
确定患者治疗的成功。在这个项目中,我们组成了学术工业合作
调查和创建可翻译的解决方案,以大大提高RT质量保证
(QA)使用最近在斯坦福大学开发的放射性发光成像技术。基于我们
有希望的初步工作,我们假设几何的准确性,功效和成本和成本
线性加速器(LINAC)的剂量学质量测量值可以大大改善。
放射性成像策略。通过拟议的研究,我们预计这是
几何测量的准确性,剂量测量的准确性优于3%的精度
与当前的练习相比,随着时间和精力的减少,很容易实现
临床质量检查中的主要工作流瓶颈并减少了潜在的辐射处理错误。这
研究提出了一种能够即时测量复杂的第一台机器QA策略
Linacs的几何和剂量计。如果成功,伙伴关系将导致很多
更安全,更有效的辐射肿瘤学实践,使患者能够真正从现代RT中受益
VMAT和IMRT和SBRT等模态。此外,拟议的策略是相当一般的,
此处开发的系统也将对于其他治疗方式的质量保证应用,例如
作为质子疗法和高剂量率(HDR)近距离放射治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Xing其他文献
Lei Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Xing', 18)}}的其他基金
Improving the Safety and Quality of Eye Plaque Brachytherapy by Assembly with Intensity Modulated Loading
通过调强加载组装提高眼斑近距离治疗的安全性和质量
- 批准号:
10579754 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
Development of AI-Augmented quality assurance tools for radiation therapy
开发用于放射治疗的人工智能增强质量保证工具
- 批准号:
10558155 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
Leveraging deep learning for markerless motion management in radiation therapy
利用深度学习进行放射治疗中的无标记运动管理
- 批准号:
10617647 - 财政年份:2021
- 资助金额:
$ 47.96万 - 项目类别:
Leveraging deep learning for markerless motion management in radiation therapy
利用深度学习进行放射治疗中的无标记运动管理
- 批准号:
10374171 - 财政年份:2021
- 资助金额:
$ 47.96万 - 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
- 批准号:
10530681 - 财政年份:2018
- 资助金额:
$ 47.96万 - 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
- 批准号:
10089148 - 财政年份:2018
- 资助金额:
$ 47.96万 - 项目类别:
Radioluminescence dosimetry solution for precision radiation therapy
用于精准放射治疗的放射发光剂量测定解决方案
- 批准号:
10418642 - 财政年份:2018
- 资助金额:
$ 47.96万 - 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
- 批准号:
10360435 - 财政年份:2018
- 资助金额:
$ 47.96万 - 项目类别:
DASSIM-RT and Compressed Sensing-Based Inverse Planning
DASSIM-RT 和基于压缩感知的逆规划
- 批准号:
9269990 - 财政年份:2014
- 资助金额:
$ 47.96万 - 项目类别:
DASSIM-RT and Compressed Sensing-Based Inverse Planning
DASSIM-RT 和基于压缩感知的逆规划
- 批准号:
8643085 - 财政年份:2014
- 资助金额:
$ 47.96万 - 项目类别:
相似国自然基金
新一代网络环境下对称密码算法的自动化分析与设计技术研究
- 批准号:62032014
- 批准年份:2020
- 资助金额:297 万元
- 项目类别:重点项目
基于自动化搜索与机器学习的分组密码算法分析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于组合机器学习算法的病理性近视眼底多模态影像资料自动化定量分析研究
- 批准号:81970846
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
轻量级分组密码算法的设计和分析
- 批准号:61902100
- 批准年份:2019
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
考虑资源约束的柔性自动化制造单元调度优化研究
- 批准号:71901176
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NMR Technologies for Integrating Structure, Function and Disease
整合结构、功能和疾病的 NMR 技术
- 批准号:
10089598 - 财政年份:2021
- 资助金额:
$ 47.96万 - 项目类别:
NMR Technologies for Integrating Structure, Function and Disease
整合结构、功能和疾病的 NMR 技术
- 批准号:
10323282 - 财政年份:2021
- 资助金额:
$ 47.96万 - 项目类别:
NMR Technologies for Integrating Structure, Function and Disease
整合结构、功能和疾病的 NMR 技术
- 批准号:
10573321 - 财政年份:2021
- 资助金额:
$ 47.96万 - 项目类别:
A Single-Sided Magnetic Particle Imaging Scanner for In Vivo Breast Cancer Imaging
用于体内乳腺癌成像的单面磁粒子成像扫描仪
- 批准号:
9812008 - 财政年份:2019
- 资助金额:
$ 47.96万 - 项目类别:
Radioluminescence dosimetry solution for precision radiation therapy
用于精准放射治疗的放射发光剂量测定解决方案
- 批准号:
10418642 - 财政年份:2018
- 资助金额:
$ 47.96万 - 项目类别: