Leveraging deep learning for markerless motion management in radiation therapy
利用深度学习进行放射治疗中的无标记运动管理
基本信息
- 批准号:10617647
- 负责人:
- 金额:$ 42.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectBrainClinicalComplicationDataData SetDetectionDevelopmentDisciplineDiseaseDoseDuodenumHead and neck structureHemorrhageImageImplantInfectionIntensity-Modulated RadiotherapyInvestigationLeadLearningLiverLocationLungMalignant NeoplasmsMalignant neoplasm of pancreasMethodsModelingModernizationModificationMonitorMotionNatureNeoplasmsNormal tissue morphologyOrganPancreasPatient CarePatientsPerformancePositioning AttributeProbabilityProceduresProcessProstateProstate Cancer therapyRadiation Dose UnitRadiation OncologyRadiation therapyRadiosurgeryResearchRetrospective StudiesRoentgen RaysSiteSystemTechniquesTimeTrainingUncertaintyVertebral columnVisualizationX-Ray Computed TomographyX-Ray Medical Imagingcancer typecone-beam computed tomographyconventional therapyconvolutional neural networkcostdeep learningdeep learning algorithmdeep learning modelexperimental studyimage guidedimage guided interventionimage guided radiation therapyimprovedindexinglearning strategynovelpancreas imagingpancreas radiation therapypredictive modelingreal time modelrespiratorytreatment planningtumor
项目摘要
Leveraging deep learning for markerless motion management in radiation therapy
Project Summary
Organ motion is a predominant limiting factor for the maximum exploitation of modern radiation therapy
(RT). Adverse influence of the organ motion is aggravated in hypofractionated treatment because of
protracted dose delivery. Current image guided RT often relies on the use of implanted fiducial markers
(FMs) for online/offline target localization, which is invasive and costly, and introduces possible
bleeding, infection and discomfort of the patient. In this project, we harness the enormous potential of
deep learning and investigate a novel markerless localization strategy by combined use of a pre-trained
deep learning model and kV X-ray projection or cone beam CT images. We hypothesize that incorporation
of deep layers of image information allows us to visualize otherwise invisible target in real-time and greatly
reduce the uncertainties in beam targeting. Specific aims of the project are to: (1) Develop a DL-based
tumor target localization framework for image guided RT (IGRT); (2) Apply the DL-based strategy to
localize prostate target on 2D kV X-ray projection and 3D CBCT images; and (3) Evaluate the potential
clinical impact of the DL strategy for pancreatic IGRT. This study brings up, for the first time, highly
accurate markerless target localization based on deep learning and provides a clinically sensible solution
for IGRT of prostate and pancreas cancers or other types of cancers. Successful completion of this
investigation will significantly advance the current beam targeting technique and provide radiation
oncology discipline a powerful way to safely and reliably escalate the radiation dose for precision RT.
Given its significant promise to optimally cater for inter- and intra-fractional uncertainties, the study
should lead to substantial improvement in patient care and enables us to utilize maximally the technical
capability of modern RT such as IMRT and VMAT. Given the dose responsive nature of various cancers and
that the proposed method requires no hardware modification, this research should lead to a widespread impact
on the management of neoplasmic diseases affected by organ motion.
利用深度学习用于放射治疗中的无标记运动管理
项目摘要
器官运动是最大程度利用现代放射治疗的主要限制因素
(RT)。器官运动的不利影响因降量治疗而加剧
剂量递送。当前的图像引导的RT通常依赖于使用植入的基准标记
(FMS)用于在线/离线目标本地化,这是侵入性和昂贵的,并引入了可能的
患者出血,感染和不适。在这个项目中,我们利用了
深度学习和研究一种新颖的无标记本地化策略,通过联合使用预训练
深度学习模型和KV X射线投影或锥束CT图像。我们假设该合并
图像信息的深层层次使我们能够实时可视化其他看不见的目标
减少光束靶向的不确定性。该项目的具体目的是:(1)开发基于DL的
图像引导RT(IGRT)的肿瘤目标定位框架; (2)将基于DL的策略应用于
在2D KV X射线投影和3D CBCT图像上定位前列腺靶; (3)评估潜力
DL策略对胰腺IGRT的临床影响。这项研究首次提出
基于深度学习的准确无标记目标定位,并提供临床上明智的解决方案
对于前列腺和胰腺癌或其他类型的癌症的IGRT。成功完成
调查将大大提高当前光束靶向技术并提供辐射
肿瘤学纪律是一种安全可靠地升级辐射剂量的有力方法。
鉴于其巨大的承诺能够最佳地迎合划分间和分数的不确定性,因此该研究
应该导致患者护理的重大改善,并使我们能够最大程度地利用技术
IMRT和VMAT等现代RT的能力。考虑到各种癌症的剂量响应性质
提出的方法不需要修改硬件,这项研究应导致广泛影响
关于受器官运动影响的肿瘤疾病的管理。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Xing其他文献
Lei Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Xing', 18)}}的其他基金
Improving the Safety and Quality of Eye Plaque Brachytherapy by Assembly with Intensity Modulated Loading
通过调强加载组装提高眼斑近距离治疗的安全性和质量
- 批准号:
10579754 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Development of AI-Augmented quality assurance tools for radiation therapy
开发用于放射治疗的人工智能增强质量保证工具
- 批准号:
10558155 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Leveraging deep learning for markerless motion management in radiation therapy
利用深度学习进行放射治疗中的无标记运动管理
- 批准号:
10374171 - 财政年份:2021
- 资助金额:
$ 42.42万 - 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
- 批准号:
10530681 - 财政年份:2018
- 资助金额:
$ 42.42万 - 项目类别:
Radioluminescence dosimetry solution for precision radiation therapy
用于精准放射治疗的放射发光剂量测定解决方案
- 批准号:
10160833 - 财政年份:2018
- 资助金额:
$ 42.42万 - 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
- 批准号:
10089148 - 财政年份:2018
- 资助金额:
$ 42.42万 - 项目类别:
Radioluminescence dosimetry solution for precision radiation therapy
用于精准放射治疗的放射发光剂量测定解决方案
- 批准号:
10418642 - 财政年份:2018
- 资助金额:
$ 42.42万 - 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
- 批准号:
10360435 - 财政年份:2018
- 资助金额:
$ 42.42万 - 项目类别:
DASSIM-RT and Compressed Sensing-Based Inverse Planning
DASSIM-RT 和基于压缩感知的逆规划
- 批准号:
9269990 - 财政年份:2014
- 资助金额:
$ 42.42万 - 项目类别:
DASSIM-RT and Compressed Sensing-Based Inverse Planning
DASSIM-RT 和基于压缩感知的逆规划
- 批准号:
8643085 - 财政年份:2014
- 资助金额:
$ 42.42万 - 项目类别:
相似国自然基金
长期拥挤胁迫对大口黑鲈不同脑区的影响
- 批准号:32303033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
6PPD-醌干扰肠道微生物-免疫-脑轴影响儿童认知发育的研究
- 批准号:22376079
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
组氨酸介导肠道微生物调节谷氨酸能系统影响蛋鸡啄羽的肠-脑轴机制
- 批准号:32372931
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
- 批准号:82373595
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于颞叶癫痫探讨ta-VNS对工作记忆影响及脑网络机制研究
- 批准号:82301353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
- 批准号:
10571411 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别: