Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
基本信息
- 批准号:8997542
- 负责人:
- 金额:$ 41.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsActive SitesAdhesionsAnimalsArchitectureAreaBiological Neural NetworksBrainBrain MappingCereportCharacteristicsChronicClinicalClinical TrialsCommunitiesComplexComputersDataDepositionDetectionDevelopmentDevicesElectrodesEngineeringExtravasationFDA approvedFelis catusFutureGoalsHumanIn VitroIndividualIonsLocationMapsMeasurementMeasuresMetalsModelingNeuronsNeurosciencesNoisePatternPerformancePhysiologic pulsePhysiologicalPlatinumPrevalenceProceduresProcessPropertyPublishingRecordsReproducibilityResearchResearch PersonnelResolutionScanning Electron MicroscopyShapesSignal TransductionSiteSourceSpectrum AnalysisSpeedStructureSurfaceTechniquesTechnologyTestingTimeTissuesUtahValidationWritingbasedensitydesignelectric impedanceflexibilityimprovedin vitro testingin vivoinnovationmillimeternanometerneuroregulationnovelpublic health relevancerelating to nervous systemsuccesstool
项目摘要
DESCRIPTION (provided by applicant): The technological advancements in neural engineering have provided an increasingly more powerful toolset of designs, materials, components and integrated devices for establishing high-fidelity chronic neural interfaces. A primary requirement of these neural interfaces for majority of the neuroscience studies is the ability to simultaneously record and/or stimulate from a large neuronal aggregates for specific periods of time. The future progress in neuroscience to a large extent relies on the ability of these neural interfaces to allow simultaneous observation and experimental access of complex neural networks and properties of cooperating neurons. Two critical solutions for achieving this goal are placing a large number of electrode sites in a small amount of tissue at the sub-millimeter range without significant tissue damage and efficient isolation of action potentials emanating from individual neurons. These solutions have remained largely unexploited mainly because of technological challenges, inherent limitations in design tolerances, and non-standard manufacturing techniques used in existing neural devices. Today, most of the success achieved in understating the physiological function of the brain is based on the sequential analysis of single-site recordings. And one neural interface, which has been successful in achieving this is the Utah electrode array (UEA), the only FDA approved commercialized device that has been extensively used in human clinical trials. Although the reasons are debatable as to its prevalence, the UEA records a rich feature set of neuronal information by distributing its electrodes at regular spacing over a large region across the cortical surface. However, this also implies that the data on any given electrode may be the only source of such information and, hence, it is not a robust source of information. As a result there has been a long-desire in the neuroscience community for having the ability to have multiple active sites distributed along each UEA electrode shanks, which could give it the robustness in feature extraction but not at the expense of losing its ability to record across the a wide region of cortical surface. We have developed a novel focused ion beam (FIB) technology that allows fabricating multiple sites on the shafts of the UEA. The FIB technology allows one to literally "write" with platinum on the shaft of the UEA with precise control and <1 um resolution. As the underlying structure of the proposed Utah Multisite electrode array (UMEA) is a UEA, our proposed innovation does not lose the value of the standard UEA but does gain the advantage of robustness in detection of neuronal sources. Furthermore, the flexibility in patterning multiple sites on each shank readily allows the creation of tetrode and laminar configurations of multisites on the shaft of the UEA so that the device can be tailored to the task. Also the electrode sites can be realized from a variety of materials, can have a range of surface areas, and can be placed anywhere along the shanks at any spacing. The objective of this research is to design, investigate and validate different configurations of high density (56 electrodes/mm2) UMEA (specific aim-I). We will perform in-vitro testing (specific aim-II) and in-vivo validation and comparison of recording performance of different configuration of the UMEA (specific aim-III). The presented innovation and objectives in this proposal will open a whole spectrum of new possibilities for the neuroscience researcher. It is envisioned that the UMEA will be a better tool for understanding neuronal activity by providing recordings sites in a three dimensional region of cortex. The ease and flexibility of incorporating any multisite design of on the UEA shanks makes the presented approach simple and yet efficient. As a result, the proposed study will be a shortest path towards product validation (device and animal) and the clinical implementation of a new electrode technology (UMEA).
描述(由申请人提供):神经工程的技术进步为建立高保真慢性神经接口提供了越来越强大的设计、材料、组件和集成设备工具集。 大多数神经科学研究对这些神经接口的主要要求是能够在特定时间段内同时记录和/或刺激大型神经元聚集体。 神经科学的未来进展在很大程度上依赖于这些神经接口的能力,以允许同时观察和实验访问复杂的神经网络和合作神经元的属性。 实现这一目标的两个关键解决方案是在亚毫米范围内的少量组织中放置大量电极位点,而不会造成明显的组织损伤,以及有效隔离单个神经元发出的动作电位。 这些解决方案在很大程度上仍未得到开发,主要是因为技术挑战、设计公差的固有限制以及现有神经设备中使用的非标准制造技术。 如今,在了解大脑生理功能方面取得的大部分成功都是基于对单点记录的顺序分析。 成功实现这一目标的一个神经接口是犹他电极阵列 (UEA),它是 FDA 唯一批准的商业化设备,已广泛用于人体临床试验。 尽管其流行的原因存在争议,但 UEA 通过将电极以规则的间距分布在皮质表面的大面积区域,记录了丰富的神经元信息特征集。 然而,这也意味着任何给定电极上的数据可能是此类信息的唯一来源,因此,它不是可靠的信息来源。 因此,神经科学界长期以来一直希望能够在每个 UEA 电极柄上分布多个活性位点,这可以赋予其特征提取的鲁棒性,但不会以失去其记录能力为代价。穿过皮质表面的广阔区域。 我们开发了一种新颖的聚焦离子束 (FIB) 技术,允许在 UEA 的轴上制造多个位置。 FIB 技术允许人们在 UEA 轴上用铂字面“书写”,并具有精确控制和 <1 um 分辨率。 由于所提出的犹他多站点电极阵列(UMEA)的底层结构是 UEA,因此我们提出的创新不会失去标准 UEA 的价值,但确实获得了神经元源检测鲁棒性的优势。 此外,每个柄上多个位点图案化的灵活性很容易允许在 UEA 轴上创建多位点的四极和层状配置,以便该设备可以根据任务进行定制。 此外,电极部位可以由多种材料实现,可以具有一定范围的表面积,并且可以沿着柄以任何间距放置在任何地方。 本研究的目的是设计、研究和验证高密度(56 个电极/mm2)UMEA(特定目标-I)的不同配置。 我们将进行体外测试(特定目标-II)和体内验证以及不同配置的 UMEA 记录性能的比较(特定目标-III)。 该提案中提出的创新和目标将为神经科学研究人员开启一系列新的可能性。 预计 UMEA 通过在皮质的三维区域提供记录位点,将成为理解神经元活动的更好工具。 在 UEA 刀柄上整合任何多站点设计的简便性和灵活性使得所提出的方法简单而高效。 因此,拟议的研究将成为产品验证(设备和动物)和新电极技术(UMEA)临床实施的最短路径。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reusable High Aspect Ratio 3-D Nickel Shadow Mask.
- DOI:10.1109/jmems.2017.2654126
- 发表时间:2017-04
- 期刊:
- 影响因子:0
- 作者:Shandhi MMH;Leber M;Hogan A;Warren DJ;Bhandari R;Negi S
- 通讯作者:Negi S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajmohan Bhandari其他文献
Rajmohan Bhandari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajmohan Bhandari', 18)}}的其他基金
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 41.24万 - 项目类别:
An implantable chronic 128 channel macro and micro ECoG system with integrated recording, stimulation, and impedance measuring capabilities
植入式慢性 128 通道宏观和微观 ECoG 系统,具有集成记录、刺激和阻抗测量功能
- 批准号:
9085458 - 财政年份:2015
- 资助金额:
$ 41.24万 - 项目类别:
Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
- 批准号:
8715283 - 财政年份:2014
- 资助金额:
$ 41.24万 - 项目类别:
Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
- 批准号:
8877517 - 财政年份:2014
- 资助金额:
$ 41.24万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8720477 - 财政年份:2014
- 资助金额:
$ 41.24万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8453715 - 财政年份:2013
- 资助金额:
$ 41.24万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8523542 - 财政年份:2013
- 资助金额:
$ 41.24万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8617312 - 财政年份:2013
- 资助金额:
$ 41.24万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8729033 - 财政年份:2013
- 资助金额:
$ 41.24万 - 项目类别:
Development and Commercialization of Next Generation of Neural Microelectrode Arr
下一代神经微电极Arr的开发和商业化
- 批准号:
8250324 - 财政年份:2011
- 资助金额:
$ 41.24万 - 项目类别:
相似海外基金
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8720477 - 财政年份:2014
- 资助金额:
$ 41.24万 - 项目类别:
Small Molecule Inhibitors for the Oncogenic Protein Tyrosine Phosphatase SHP2
致癌蛋白酪氨酸磷酸酶 SHP2 的小分子抑制剂
- 批准号:
8067184 - 财政年份:2010
- 资助金额:
$ 41.24万 - 项目类别:
Small Molecule Inhibitors for the Oncogenic Protein Tyrosine Phosphatase SHP2
致癌蛋白酪氨酸磷酸酶 SHP2 的小分子抑制剂
- 批准号:
8260331 - 财政年份:2010
- 资助金额:
$ 41.24万 - 项目类别:
Small Molecule Inhibitors for the Oncogenic Protein Tyrosine Phosphatase SHP2
致癌蛋白酪氨酸磷酸酶 SHP2 的小分子抑制剂
- 批准号:
8680177 - 财政年份:2010
- 资助金额:
$ 41.24万 - 项目类别:
Small Molecule Inhibitors for the Oncogenic Protein Tyrosine Phosphatase SHP2
致癌蛋白酪氨酸磷酸酶 SHP2 的小分子抑制剂
- 批准号:
8490684 - 财政年份:2010
- 资助金额:
$ 41.24万 - 项目类别: