Development and Commercialization of Next Generation of Neural Microelectrode Arr
下一代神经微电极Arr的开发和商业化
基本信息
- 批准号:8250324
- 负责人:
- 金额:$ 26.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAnimalsArchitectureBiocompatible Coated MaterialsCharacteristicsChargeChronicClinical ResearchCommunitiesCouplingDepositionDevelopmentElectrodesEngineeringFilmGoalsHousingHumanHuman ResourcesInjection of therapeutic agentInstructionIridiumLaboratoriesLeadLengthMaintenanceMarketingMasksMetalsMethodologyMicroelectrodesNeuronsNeurosciencesNeurosciences ResearchPartner in relationshipPlatinumProceduresProcessResourcesSchemeScientistShapesSiteSurfaceSystemTechniquesTechnologyTimeTissuesUniversitiesUtahWorkWritingbaseclinical applicationcommercializationcostdensitydesignimprovedinterestiridium oxidemanufacturing processmeetingsmicrosystemsnew technologynext generationparylene Cpublic health relevancerelating to nervous systemsilicon carbidetechnology development
项目摘要
DESCRIPTION (provided by applicant): The array technology developed by Normann et.al. two decades ago at the University of Utah is currently being manufactured and marketed to the neuroscience research community by Blackrock Microsystems (formerly known as Cyberkinetics, Inc., CKI). The Utah electrode array (UEA) is the only high- electrode density, penetrating microelectrode array that is FDA and CE approved, for human use. These arrays, both chronic and acute, have been shown to work very well in animal subjects and their commercial availability has met with considerable interest. The 'manufacturing' procedures that are used to fabricate the UEA at present are closely based on those that were used in their initial development in the laboratory, two decades ago. To date the fabrication of the UEA's has been carried out on a single array basis and as a result the manufacturing technique is not only time consuming but also labor intensive. Also, the existing fabrication costs including utilities, manpower, and maintenance are high. More importantly, the current processes used to fabricate the UEAs impose limitations in the tolerances of the electrode array geometry and electrical characteristics. Furthermore, the flat architecture of the UEA and convoluted geometry of the targeted tissue can result in poor coupling between the two "mating" surfaces, leading to active electrode tips that are not in proximity to the target neuronal tissue. Thus for an efficient neural interface and for wide experimental usage both in experimental and clinical applications, the existing UEA fabrication technique provides inadequate quality, repeatability, and throughput. There is a need to develop less costly but higher precision batch fabrication technology. In 2006, the University of Utah proposed and began work on optimizing existing processes, exploring new materials, designing new architecture of electrode array that are compliant with the host-tissue, and last but not the least developing wafer-scale based process flow for the UEA fabrication. The applicants of this application compose of such a team of engineers, scientists that have been working together over the past years on the technology development for the UEA. The goals of this application is to transfer the manufacturing technology developed at the University of Utah to Blackrock Microsystems, making the technology into a turnkey technology that can be disseminated to the neuroscience and clinical research community, by making the existing microelectrode arrays affordable, better, reliable, and customizable for both acute and chronic applications.
PUBLIC HEALTH RELEVANCE: Relevance The new technology would allow us to fabricate neural multielectrode arrays with (a) uniformly shaped microelectrodes (b) small and uniformly exposed active tip sites (c) coated with an electrode material that can deliver high charge densities i.e. high charge injection capacity (CIC) (d) deposited with a highly robust encapsulation material for chronic applications and (e) convoluted electrode arrays for better geometrical match with the targeted tissue. Furthermore the technology would provide better quality, repeatability, and higher throughput of electrode arrays at lower cost of manufacturing and faster lead time. All these advantages would help in making the electrode arrays affordable and assessable to the neuroscience community.
描述(由申请人提供):Normann等人开发的阵列技术。二十年前在犹他大学生产,目前由 Blackrock Microsystems(以前称为 Cyberkinetics, Inc., CKI)制造并向神经科学研究界销售。 Utah 电极阵列 (UEA) 是唯一经 FDA 和 CE 批准供人类使用的高电极密度、穿透性微电极阵列。这些阵列,无论是慢性的还是急性的,已被证明在动物受试者中效果很好,并且它们的商业可用性引起了相当大的兴趣。目前用于制造 UEA 的“制造”程序与二十年前实验室初始开发中使用的程序密切相关。迄今为止,UEA 的制造是在单个阵列的基础上进行的,因此制造技术不仅耗时而且是劳动密集型的。此外,现有的制造成本(包括公用事业、人力和维护)很高。更重要的是,当前用于制造 UEA 的工艺对电极阵列几何形状和电气特性的公差施加了限制。此外,UEA 的扁平结构和目标组织的复杂几何形状会导致两个“配合”表面之间的耦合不良,从而导致有源电极尖端不接近目标神经元组织。因此,对于高效的神经接口以及在实验和临床应用中的广泛实验用途,现有的 UEA 制造技术提供的质量、可重复性和吞吐量不足。 需要开发成本更低但精度更高的批量制造技术。 2006年,犹他大学提出并开始致力于优化现有工艺、探索新材料、设计与宿主组织兼容的电极阵列新架构,最后但并非最不重要的是开发基于晶圆级的工艺流程。 UEA制造。本申请的申请人由这样一个由工程师和科学家组成的团队组成,他们在过去几年中一直共同致力于东英吉利大学的技术开发。该应用的目标是将犹他大学开发的制造技术转移到 Blackrock Microsystems,通过使现有的微电极阵列变得更便宜、更好、可靠且可针对急性和慢性应用进行定制。
公共健康相关性:相关性新技术将使我们能够制造神经多电极阵列,该阵列具有(a)形状均匀的微电极(b)小且均匀暴露的活性尖端位点(c)涂有可以提供高电荷密度(即高电荷)的电极材料注射容量 (CIC) (d) 沉积有高度坚固的封装材料,用于长期应用;(e) 卷积电极阵列,以实现与目标组织更好的几何匹配。此外,该技术将以更低的制造成本和更快的交货时间提供更好的质量、可重复性和更高的电极阵列吞吐量。所有这些优点将有助于使神经科学界能够负担得起并评估电极阵列。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel technique for increasing charge injection capacity of neural electrodes for efficacious and safe neural stimulation.
一种提高神经电极电荷注入能力以实现有效且安全的神经刺激的新技术。
- DOI:10.1109/embc.2012.6347151
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Negi,Sandeep;Bhandari,Rajmohan;Solzbacher,Florian
- 通讯作者:Solzbacher,Florian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajmohan Bhandari其他文献
Rajmohan Bhandari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajmohan Bhandari', 18)}}的其他基金
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 26.74万 - 项目类别:
An implantable chronic 128 channel macro and micro ECoG system with integrated recording, stimulation, and impedance measuring capabilities
植入式慢性 128 通道宏观和微观 ECoG 系统,具有集成记录、刺激和阻抗测量功能
- 批准号:
9085458 - 财政年份:2015
- 资助金额:
$ 26.74万 - 项目类别:
Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
- 批准号:
8715283 - 财政年份:2014
- 资助金额:
$ 26.74万 - 项目类别:
Plasma-assisted atomic layer deposition of alumina and Parylene-C bi-layer encaps
氧化铝和聚对二甲苯-C 双层封装的等离子体辅助原子层沉积
- 批准号:
8877517 - 财政年份:2014
- 资助金额:
$ 26.74万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8997542 - 财政年份:2014
- 资助金额:
$ 26.74万 - 项目类别:
Design and Validation of the Utah Multisite Electrode Array (UMEA)
犹他多点电极阵列 (UMEA) 的设计和验证
- 批准号:
8720477 - 财政年份:2014
- 资助金额:
$ 26.74万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8453715 - 财政年份:2013
- 资助金额:
$ 26.74万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8523542 - 财政年份:2013
- 资助金额:
$ 26.74万 - 项目类别:
HIGHLY CUSTOMIZABLE BLACKROCK MICRO MOLDED ARRAYS (BRMMA)
高度可定制的贝莱德微模塑阵列 (BRMMA)
- 批准号:
8617312 - 财政年份:2013
- 资助金额:
$ 26.74万 - 项目类别:
Revolutionizing Utah Array using Nanotechnology to Enhance Efficacy and Longevity
利用纳米技术革新犹他阵列以提高功效和寿命
- 批准号:
8729033 - 财政年份:2013
- 资助金额:
$ 26.74万 - 项目类别:
相似国自然基金
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 26.74万 - 项目类别:
Mechanistic Understanding of Mustard Gas Toxicity in the Retina using a Minipig Model
使用小型猪模型了解芥子气视网膜毒性的机制
- 批准号:
10882080 - 财政年份:2023
- 资助金额:
$ 26.74万 - 项目类别:
Customized nanofibers with preferential lung-targeting properties for treating metastatic pulmonary tumors
具有优先肺部靶向特性的定制纳米纤维可用于治疗转移性肺肿瘤
- 批准号:
10623913 - 财政年份:2023
- 资助金额:
$ 26.74万 - 项目类别:
Three-dimensional Confocal Microscopy Visualization and AFM-IR Chemical Mapping of Lung Surfactant Monolayer Collapse Morphologies
肺表面活性剂单层塌陷形态的三维共焦显微镜可视化和 AFM-IR 化学图谱
- 批准号:
10751972 - 财政年份:2023
- 资助金额:
$ 26.74万 - 项目类别: